[异常检测]Deep One-Class Classfication(Deep-SVDD) 论文阅读&源码分析

这篇博客详细介绍了Deep One-Class Classification(Deep-SVDD)论文,讨论了其在异常检测领域的应用。文章分析了模型结构,包括Soft-Boundary和One-Class两种Deep SVDD,并解释了为何需要避免平凡解,以及如何选择激活函数。此外,还探讨了实验结果,并提供了源码分析,包括数据集预处理和训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文链接:http://proceedings.mlr.press/v80/ruff18a

论文阅读

摘要

“尽管deep learning在很多machine learning任务中取得成功,相对较少的deep learning方法被用在异常检测任务中。一些原本被用来做其他任务的深度模型例如生成模型或压缩模型尝试被用在异常检测任务中,但是没有基于异常检测目标训练的网络”

在18年的时候,anomaly detection这个任务还没有什么深度学习的方法,摘要中提到基于异常检测的目标进行训练是整篇论文的核心,也为后面的DL-based AD任务提供了一些思路。

相关工作

相关工作部分论文提到了基于传统方法和深度方法两个方向

  • One-class SVM & support vector data description(SVDD)

    One-class SVM
    m i n 1 2 ∣ ∣ w ∣ ∣ F k 2 − ρ + 1 v n ∑ i = 1 n ξ i s . t . ⟨ w , ϕ ( x i ) ⟩ ≥ ρ − ξ i , ξ i ≥ 0 min \frac{1}{2}||w||^2_{F_k}- \rho + \frac{1}{vn}\sum_{i=1}^n\xi_i \\ s.t. \left \langle w,\phi(x_i) \right \rangle \geq \rho - \xi_i, \xi_i \geq 0 min21wFk2ρ+vn1i=1nξis.t.w,ϕ(xi)ρξi,ξi0
    SVDD
    m i n   R 2 + 1 v n ∑ i ξ i s . t . ∣ ∣ ϕ ( x i ) − c ∣ ∣ 2 ≤ R 2 + ξ i min \ R^2 + \frac{1}{vn}\sum_i\xi_i \\ s.t. ||\phi(x_i) - c||^2 \leq R^2 + \xi_i min R2+vn1i

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值