论文链接:http://proceedings.mlr.press/v80/ruff18a
论文阅读
摘要
“尽管deep learning在很多machine learning任务中取得成功,相对较少的deep learning方法被用在异常检测任务中。一些原本被用来做其他任务的深度模型例如生成模型或压缩模型尝试被用在异常检测任务中,但是没有基于异常检测目标训练的网络”
在18年的时候,anomaly detection这个任务还没有什么深度学习的方法,摘要中提到基于异常检测的目标进行训练是整篇论文的核心,也为后面的DL-based AD任务提供了一些思路。
相关工作
相关工作部分论文提到了基于传统方法和深度方法两个方向
-
One-class SVM & support vector data description(SVDD)
One-class SVM
m i n 1 2 ∣ ∣ w ∣ ∣ F k 2 − ρ + 1 v n ∑ i = 1 n ξ i s . t . ⟨ w , ϕ ( x i ) ⟩ ≥ ρ − ξ i , ξ i ≥ 0 min \frac{1}{2}||w||^2_{F_k}- \rho + \frac{1}{vn}\sum_{i=1}^n\xi_i \\ s.t. \left \langle w,\phi(x_i) \right \rangle \geq \rho - \xi_i, \xi_i \geq 0 min21∣∣w∣∣Fk2−ρ+vn1i=1∑nξis.t.⟨w,ϕ(xi)⟩≥ρ−ξi,ξi≥0
SVDD
m i n R 2 + 1 v n ∑ i ξ i s . t . ∣ ∣ ϕ ( x i ) − c ∣ ∣ 2 ≤ R 2 + ξ i min \ R^2 + \frac{1}{vn}\sum_i\xi_i \\ s.t. ||\phi(x_i) - c||^2 \leq R^2 + \xi_i min R2+vn1i∑