[异常检测]Explainable Deep One-Class Classfication论文阅读总结

本文介绍了深度学习无监督异常检测的新方法,通过将Deep SVDD模型的输出调整为二维矩,提供异常解释热图。在CIFAR-10、ImageNet等数据集上取得良好效果,同时在MVTec-AD数据集上实现异常位置解释。文章提出了无监督上采样算法,以保留特征图的空间信息,并使用pseudo-Huber loss进行训练,使正常样本与异常样本的区分更明确。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Motivation

“This transformation is highly non-linear, finding interpretations poses a significant challenge.”

之前例如Deep-SVDD(DSVDD)等比较经典的无监督异常检测算法,很难解释一张图片为什么是异常的,因此这篇文章考虑将之前的DSVDD模型最终比较的向量调整为二维矩(explanation heatmap),在CIFAR-10 ImageNet上面有提升,且在MVTec-AD数据集上可以做到解释异常位置。

Contribution

  • 在传统无监督one-class任务中的效果接近sota(cifar10 imagenet)
  • 在含有ground-truth的数据集中制定了新的sota
  • 解释了DSVDD的Clever Hans效应。

Model

在这里插入图片描述

最传统的全连接卷积网络,图片被映射到 1 ∗ u ∗ v 1*u*v 1uv​的feature map。论文提到卷积层的一个重要性质就是feature map的一个piexel只有关于输入的一个固定的感受野,这样feature map的异常分数就可以映射回原图片的位置。(保留 spatial information)

在这里插入图片描述

经过Fully Convolutional Data Description 得到一个feature map,同样也是一个 heatmap,再经过上采样获得原尺寸异常区域解释图。

Loss

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-cuD67U4m-1629441635411)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\image-20210820095914353.png)]

其实 y i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值