mapreduce API--- join 案例

join案例

两张表:
Province:----><1,a#beijing>
1 beijing
2 hangzhou
3 shaoxing
4 wenzhou
5 tianjing
6 taizhou
7 henan
8 wuhan

Data
1 2010 1964<1, b#2010 1962> <1,b#2010,2399>
1 2010 2399
2 2011 1398
4 2011 4444
4 2010 3452
9 2010 2341
9 2011 3442 //无效数据
------><1,beijing 2010 1962> <1,beijing 2010 2399>
如果不打标记 b 和b会进行合并
只有a和b可以进行合并

需求:对两张表进行连接 过滤无效的数据
1 beijing 2010 1962
1 beijing 2010 2399

编程思路
1.map的过程:数据分片来自于哪个文件—>标记,为了后面的合并
map的输出:<1,a#beijing b#2010 1962 b#2010 2399>
2.reduce 让a#和b#合并

packagemapredeuce;
 
importorg.apache.hadoop.conf.Configuration;
importorg.apache.hadoop.fs.Path;
importorg.apache.hadoop.io.LongWritable;
importorg.apache.hadoop.io.Text;
importorg.apache.hadoop.mapreduce.Job;
importorg.apache.hadoop.mapreduce.Mapper;
importorg.apache.hadoop.mapreduce.Reducer;
importorg.apache.hadoop.mapreduce.lib.input.FileInputFormat;
importorg.apache.hadoop.mapreduce.lib.input.FileSplit;
importorg.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 
importjava.io.IOException;
importjava.util.Vector;
 
publicclassjoin{
publicstaticvoidmain(String[]args)throwsIOException,InterruptedException,ClassNotFoundException{
//1.读取配置文件(知道hdfs在哪里了)
Configurationconf=newConfiguration();
//2.创建job
Jobjob=Job.getInstance(conf,"join");
//设置Job运行的主类
job.setJarByClass(wordcount.class);
//3.设置job从哪里读数据怎么处理怎么输出
//input
PathinputPath=newPath(args[0]);
FileInputFormat.setInputPaths(job,inputPath);//读取文件规则格式化
 
//map
job.setMapperClass(join.mapper.class);//map用哪个类处理null
job.setMapOutputKeyClass(Text.class);//先是null
job.setMapOutputValueClass(Text.class);//null
//补充
 
//shuffle
 
//reduce
job.setReducerClass(join.reducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
//output
PathoutputPath=newPath(args[1]);
FileOutputFormat.setOutputPath(job,outputPath);
//任务提交
booleanisSuccess=job.waitForCompletion(true);
//成功0否则就是1
System.exit(isSuccess?0:1);
 
 
}
publicstaticclassmapperextendsMapper<LongWritable,Text,Text,Text>{
privatefinalstaticTextKEY=newText();
privatefinalstaticTextVALUE=newText();
@Override
protectedvoidmap(LongWritablekey,Textvalue,Contextcontext)throwsIOException,InterruptedException{
//对文件进行分割获取文件名来区分两张表
FileSplitfileSplit=(FileSplit)context.getInputSplit();
//承接分割出来的信息
Stringoutkey="";
Stringoutvalue="";
 
//获取读取文件的路径,便于判断后续再values前面加a#b#
Stringpath=fileSplit.getPath().toString();
//将value的内容转换成string类型//包括1beijingLongWritable代表的是行偏移量
Stringline=value.toString();
//排错:如果文件为空直接返回
if(line==null||line.equals("")){
return;
 
}
//如果文件不为空,判断目前读取什么文件
if(path.contains("provinces")){
String[]values=line.split("");
//如果该行不为两列,说明是无效数据
if(values.length!=2){
return;
}
outkey=values[0];
outvalue="a#"+values[1];
 
}
elseif(path.contains("datas")){
String[]values=line.split("");
//如果改行不为3列,说明是无效数据
if(values.length!=3){
return;
}
outkey=values[0];
outvalue="b#"+values[1]+""+values[2];
}
//outkey和outvalue同时存在的时候
if(!outkey.equals("")&&!outvalue.equals("")){
KEY.set(outkey);
VALUE.set(outvalue);
context.write(KEY,VALUE);
 
 
}
 
 
}
}
/**map输出<1a#beijing>
*<1b#20101962>
*<1b#20112019>
*reduce输入TEXT,TEXT
*reduce输出<1beijing20101062>
*<1beijing20112019>
*TextText
 
*/
publicstaticclassreducerextendsReducer<Text,Text,Text,Text>{
@Override
protectedvoidreduce(Textkey,Iterable<Text>values,Contextcontext)throwsIOException,InterruptedException{
//定义两个容器A装Provinces--->a#B装datas----->b#
Vector<String>A=newVector<String>();
Vector<String>B=newVector<String>();
 
for(Textval:values){
if(val.toString().startsWith("a#")){
A.add(val.toString().substring(2));
 
 
}
elseif(val.toString().startsWith("b#")){
B.add(val.toString().substring(2));
}
}
//确定容器的层数---->要遍历的次数
intsizeA=A.size();
intsizeB=B.size();
//定义变量来接收合并的values
Stringstr="";
for(inti=0;i<sizeA;i++){
for(intj=0;j<sizeB;j++){
str=A.get(i)+""+B.get(j);
context.write(key,newText(str));
}
 
 
}
 
}
}
 
}
<think>好的,我现在需要回答用户关于如何在MapReduce中实现Join操作的问题,并且要给出示例代码和解释。首先,我得回忆一下MapReduce的基本原理,以及常见的Join方法。根据用户提供的引用内容,MapReduce中的Join操作主要有两种:Reduce端Join和Map端Join。我需要分别解释这两种方法的原理、适用场景,并提供相应的代码示例。 首先,Reduce端Join,也就是通常所说的Reduce侧连接。这种方法的核心思想是在Map阶段为不同来源的数据打标签,然后在Reduce阶段根据相同的键进行合并。例如,用户提到的两个表,订单表和用户表,订单表中的记录可能包含用户ID,而用户表包含用户ID对应的详细信息。在Map阶段,需要将这两个表的数据都发送到Reduce端,并且标记每条记录来自哪个表,这样在Reduce端才能区分并合并。这种方法适用于两个表都较大的情况,但缺点是需要经过Shuffle过程,数据传输量大,效率可能较低。 然后是Map端Join,这种方法适用于其中一个表较小的情况。因为小表可以完全加载到内存中,例如在DistributedCache中,Map阶段在处理大表的每条记录时,直接与小表在内存中的数据进行连接,这样避免了Shuffle过程,提高了效率。用户提到的引用[4]中详细说明了Map side join的优化场景,即一个大表和一个小表的情况。 接下来,我需要考虑如何用代码示例来说明这两种方法。对于Reduce端Join,可能需要编写Mapper和Reducer的代码,其中Mapper为不同来源的数据打标签,Reducer进行合并。而对于Map端Join,则需要在Mapper的setup方法中加载小表数据到内存,然后在map函数中进行连接操作。 需要注意的是,用户提供的引用中有提到MapJoin和ReduceJoin的区别,以及具体的应用场景,如引用[4]中的案例。我需要确保代码示例符合这些描述,并且语法正确。例如,在Reduce端Join中,Mapper输出时使用复合键,或者通过某种方式标记数据来源,如标记为"A"或"B"。然后在Reducer中,根据不同的标记将数据分别存储到不同的列表中,最后进行笛卡尔积合并。 在Map端Join的例子中,需要展示如何在setup方法中读取缓存文件,并将小表的数据存储在HashMap中。然后在map处理大表数据时,直接查询HashMap进行连接,输出结果。 此外,还需要注意代码的结构,例如在Python中使用MRJob库来实现MapReduce作业,或者在Java中使用HadoopAPI。根据用户提供的引用,示例代码可能更偏向于伪代码或Python实现,但需要明确说明。 同时,要确保回答符合用户的要求,结构清晰,分步骤解释,并且引用相关的引用内容。例如,在解释Reduce端Join时,可以引用[4]中提到的关于Shuffle阶段数据传输的问题,说明其低效性。而在Map端Join中,可以引用[4]提到的适用于小表的情况。 最后,生成相关问题,可能需要围绕MapReduceJoin操作的其他方法、性能优化、适用场景等展开,比如如何优化Reduce端Join的性能,或者比较不同Join方法的优缺点。 现在需要组织这些思路,确保回答结构清晰,代码示例正确,并且引用正确的内容。同时,要注意使用中文,行内公式用$...$,独立公式用$$...$$,但在这个问题中可能数学公式较少,主要涉及代码和流程解释。</think>在MapReduce中实现Join操作主要有两种方法:**Reduce端Join**和**Map端Join**,具体实现方式及示例如下: --- ### 一、Reduce端Join(Reduce Side Join) #### 原理 1. **Map阶段**:为不同来源的数据打标签(例如标记为“订单表”或“用户表”),输出键为Join字段(如用户ID),值为原始数据+来源标签。 2. **Reduce阶段**:根据相同键合并不同来源的数据,执行笛卡尔积生成最终结果。 #### 适用场景 - 两个表均较大,无法直接加载到内存[^4]。 #### 示例代码(Python MRJob) ```python from mrjob.job import MRJob class ReduceSideJoin(MRJob): def mapper(self, _, line): # 假设输入数据格式:表名,用户ID,其他字段 parts = line.split(',') table = parts[0] key = parts[1] value = ','.join(parts[2:]) yield key, (table, value) # 输出键为用户ID,值为(表名,数据) def reducer(self, key, values): orders = [] users = [] for table, value in values: if table == 'orders': orders.append(value) elif table == 'users': users.append(value) # 笛卡尔积合并数据 for order in orders: for user in users: yield key, (order, user) if __name__ == '__main__': ReduceSideJoin.run() ``` --- ### 二、Map端Join(Map Side Join) #### 原理 1. **预处理**:将小表(如用户表)通过DistributedCache分发到所有Map节点。 2. **Map阶段**:在内存中加载小表数据(如存储为哈希表),直接与大表数据进行Join操作,无需Reduce阶段。 #### 适用场景 - 一个表非常大,另一个表足够小(可放入内存)[^4]。 #### 示例代码(Python MRJob) ```python from mrjob.job import MRJob import os class MapSideJoin(MRJob): def configure_args(self): super().configure_args() self.add_file_arg('--users') # 小表路径 def mapper_init(self): self.user_info = {} with open(self.options.users, 'r') as f: for line in f: parts = line.strip().split(',') user_id = parts[0] info = parts[1] self.user_info[user_id] = info def mapper(self, _, line): # 处理大表(订单表)数据 parts = line.split(',') user_id = parts[1] order_info = parts[2] if user_id in self.user_info: yield user_id, (order_info, self.user_info[user_id]) if __name__ == '__main__': MapSideJoin.run() ``` --- ### 对比分析 | **方法** | **优点** | **缺点** | |----------------|-----------------------------|-----------------------------| | **Reduce端Join** | 适用于任意大小的表 | Shuffle阶段数据传输量大,效率低[^4] | | **Map端Join** | 避免Shuffle,效率高 | 仅适用于小表与大表关联 | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值