参考文献
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
前情提要
FM
FFM
前面我们说过FFM,比FM整整多了一个F!而今天的主角,DeepFM,整整比FM多了一个Deep!谁更牛逼已经无须多言,下面具体分解。
Deep是什么?眼下人工智能异军突起,要问眼下谁是最靓的仔?神经网络啊!那谁比神经网络(别名NN)还要靓?深度神经网络(别名DNN)啊!那这个Deep说的就是那个深度神经网络啊!那DeepFM自然是不屑地将FM,FFM抛在身后,昂首挺胸地走在时代的最前沿啊!
那为什么有了Deep后,DeepFM就能走在最前沿了呢?我们知道FM跟FFM比起弱智的线性模型多考虑了特征的交叉项。那为什么要考虑特征的交叉项呢?据研究表明,一到饭点时有关外卖的APP就被点击得很频繁,那这里饭点,也即时间是一个特征,APP的类别,这里是外卖类也是一个特征,这两个特征就经常发生些关系,所以考虑他们的交叉项实在是很有必要啊。
那再据研究表明,男性青年大都喜欢玩射击游戏!那这里,男性之于性别,青年之于年龄,射击游戏之于APP类别,竟同时出现了三个特征!该怎么办才好?FM跟FFM不是说好了只考虑两个特征的交叉么?那三个特征交叉实在搞不了啊!!!这时,有人就问了,FM不是有一个 d-way Factorization Machine的推广么,那个可以弄三个特征的交叉呀!well,其实那个推广只是看上去很美,实则运算复杂度极高,不实用,一般也不用,再说了,如果其实还有四个特征的交叉,五个特征的交叉!那个复杂度就膨胀得没边了!
那此时此刻,怎么办?感觉世界陷入了一片黑暗,在这无边的黑暗中有一个声音响起,“交叉?我神经网络啥都不会,就特么会穿插分割,合纵连横,鳞次栉比,美轮美奂呀?我全身就长满了交叉啊