亲测:windows系统本地Docker部署LLM应用开发平台dify加实战详细教程

    最近计划转型AI程序员,这是一个新名词,其实最近一年已经在使用ai,来解决一些项目中的业务逻辑问题,对AI的发展一直在关注,正好有机会接触这块,所以会用到Dify平台。

    本文将详细介绍,如何基于Dify在本地部署一个自己的LLM应用开发平台。只需要半天,心怀感激的站在巨人肩膀打造自己的AI平台。

    虽然Dify官方有详细教程如何本地部署,但是在使用过程中,我还是有遇到一些问题,本文会详细介绍问题解决方法,以及总结一些自己对AI开发的一些思考,希望能帮助到想了解AI应用,对AI感兴趣的人。

1. Dify平台介绍


    Dify 是一款开源的大语言模型(LLM) 应用开发平台。它融合了后端即服务(Backend as Service)和LLMOPs的理念,使开发者可以快速搭建生产级的生成式 AI 应用。

由于 Dify 内置了构建 LLM 应用所需的关键技术栈,包括对数百个模型的支持、直观的 Prompt 编排界面、高质量的 RAG 引擎、稳健的 Agent 框架、灵活的流程编排,并同时提供了一套易用的界面和 API。相比偏技术和研究的LangChain框架,Dify提供了更接近生产需要的完整方案,并且经过了精良的工程设计和软件测试。

这为开发者节省了许多重复造轮子的时间,让我们可以专注在擅长的,业务创新和需求实现上。

 2.Dify使用场景


Dify最大的优势是,它开源并且具备成熟和完善的功能,可以进行本地部署。

官网给出使用Dify平台的优势和使用场景如下:

将 LLM 集成至已有业务,通过引入 LLM 增强现有应用的能力,接入 Dify 的 RESTful API 从而实现 Prompt 与业务代码的解耦,在 Dify 的管理界面是跟踪数据、成本和用量,持续改进应用效果。

探索 LLM 的能力边界,即使你是一个技术小白,通过 Dify 也可以轻松的实践 Prompt 工程和 Agent 技术,在 GPTs 推出以前就已经有超过 60,000 开发者在 Dify 上创建了自己的第一个应用。

作为企业级 LLM 基础设施,一些银行和大型互联网公司正在将 Dify 部署为企业内的 LLM 网关,加速 GenAI 技术在企业内的推广,并实现中心化的监管。

创业,快速的将你的 AI 应用创意变成现实,无论成功和失败都需要加速。在真实世界,已经有几十个团队通过 Dify 构建 MVP(最小可用产品)获得投资,或通过 POC(概念验证)赢得了客户的订单。

如果你只是想体验创建智能体,或者想有好的创意想快速变为现实,其实使用平台功能更好,它们提供了更完善的功能和服务。

如果你工作中有私有化部署的需求,或者想从技术角度了解创建智能体平台的技术栈,那我们就开始进行下一步Dify的搭建了

3.Dify本地化部署


3.1 环境准备

为了快速部署,当然要使用Docker环境了,linux系统docker环境还是比较容易安装的,如果有小伙伴使用的Windows系统,那么推荐你看我另一篇博文Win11家庭版 配置 WSL/Ubuntu+Docker详细步骤

3.2 下载代码

在linux环境执行

git clone https://github.com/langgenius/dify.git

3.3 docker-compose部署Dify

cd dify/docker
cp .env.example .env
docker-compose up -d

 .env文件默认端口是80,为了避免冲突可以修改端口

EXPOSE_NGINX_PORT=18088

拉取镜像时间较久,请耐心等待

成功后检查容器状态

docker-compose ps

可以看到容器都运行了

3.4 访问dify

浏览器输入 http://localhost:18088

终于看到登录界面了,这里我们要设置管理的账户信息

设置好管理员账户,会跳到登录界面,注意是邮箱账号,我们输入前面设置的邮箱直接登录

 4. Dify使用

刚部署的Dify是没有模型的,我们右上角打开设置界面,可以看到很多模型供应商

4.1 使用Ollama部署本地模型

接下来我们演示Dify使用本地部署的大模型,在我的Ubuntu系统打开一个新的终端连接,执行

mkdir ollama
cd ollama/
curl -fsSL https://ollama.com/install.sh | sh

 安装成功如下

我们按提示,访问http://localhost:11434/,证明Ollama已经成功运行

我们运行 Ollama 尝试与 Llava 聊天 

ollama run llava

我输入了一句 How are you? 可以看到 Llava回复了我

4.2 Dify中接入Ollama大语言模型

接入之前,我们需要修改下Ollama的配置,终端执行,后面dify配置会用到

sudo vim /etc/systemd/system/ollama.service

在文件中[Service]部分下增加一行Environment:

[Service]
Environment="OLLAMA_HOST=0.0.0.0"

重载systemd

systemctl daemon-reload

重启Ollama服务:

systemctl restart ollama

 

接下来回到Dify的设置界面,我们选择Ollama模型供应商,打开如下界面


参数说明: 

模型名称:llava

基础 URL:http://<本机IP地址>:11434

此处需填写可访问到的 Ollama 服务地址,我们前面修改Environment就是为此。

若 Dify 为 docker 部署,建议填写局域网 IP 地址,如:http://192.168.1.100:11434 或 docker 宿主机 IP 地址,如:http://127.0.0.1:11434。若为本地源码部署,可填写 http://localhost:11434。

模型类型:对话

模型上下文长度:4096

模型的最大上下文长度,若不清楚可填写默认值 4096。

最大 token 上限:4096

模型返回内容的最大 token 数量,可与模型上下文长度保持一致。

是否支持 Vision:是

当模型支持图片理解(多模态)勾选此项,如使用 llava就需要勾选


设置好参数后,我们保存,没有错误即可开始使用模型了,看下图已经配置好了

4.3  创建AI应用

    回到dify主页面当中,我们点击点击创建空白应用

右上角选择llava模型

选好模型,我们发布并更新应用

接下来,就可以愉快的和自己创建的聊天助手聊天啦

这次Dify部署加实战演示就介绍到这里了,感谢能看到这里的朋友😉

        本次的分享就到这里,终极量化数据致力于为大家分享技术干货😎

        如果以上过程中出现了任何的纰漏错误,烦请大佬们指正😅

        受益的朋友或对技术感兴趣的伙伴记得点赞关注支持一波🙏

        也可以搜索关注我的微信公众号【终极量化数据】,留言交流🙏

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

终极量化数据

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值