神经网络在金融预测中的应用
1. 引言
金融市场的预测一直是投资者、分析师和学者们关注的焦点。随着计算智能技术的发展,神经网络作为一种强大的工具,逐渐被应用于金融市场的预测中。神经网络能够处理复杂的非线性关系,这使其在金融预测领域具有独特的优势。本文将详细介绍神经网络在金融预测中的应用,包括其基本概念、具体应用、与其他方法的比较以及实际案例分析。
2. 神经网络的基础概念
2.1 神经网络的结构
神经网络是一种模拟人脑神经元结构的计算模型,由多个层次组成,包括输入层、隐藏层和输出层。每一层包含若干个神经元(或称节点),各层之间通过权重相连。神经网络的典型结构如下所示:
层次 | 描述 |
---|---|
输入层 | 接收外部输入数据,传递给下一层。 |
隐藏层 | 包含多个隐藏节点,负责数据的非线性变换。 |
输出层 | 产生最终的预测结果。 |
神经网络中的每个神经元都有一个传递函数(transfer function),用于将输入信号转换为输出信号。常见的传递函数包括Sigmoid函数和双曲正切函数(hyperbolic tangent function),其数学表达式分别为:
[ h_s(x) = \fra