RuntimeError: Failed to load shared library ‘.../python3.11/site-packages/llama_cpp/lib/libllama.so‘

安装xinference报错

 ERROR: Failed building wheel for llama-cpp-python
Failed to build llama-cpp-python
ERROR: Could not build wheels for llama-cpp-python, which is required to install pyproject.toml-based projects

后找到一个加速器

wget https://git.886.be/https://github.com/abetlen/llama-cpp-python/releases/download/v0.2.88-cu122/llama_cpp_python-0.2.88-cp311-cp311-linux_x86_64.whl
 pip install llama_cpp_python-0.2.88-cp311-cp311-linux_x86_64.whl

然后继续全量安装 xinference

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple "xinference[all]"

安装是成功的,

但是执行 下面命令时

xinference --version
### 关于 `libllama.so` 加载失败以及 `libcuda.so.1` 缺失的解决方案 #### 问题分析 当遇到 `RuntimeError: Failed to load shared library libllama.so` 或者 `libcuda.so.1 cannot open shared object file` 的错误时,通常是因为动态链接库文件未找到或者依赖项不满足。以下是可能的原因及其对应的解决方法: 1. **缺少必要的共享库文件** 如果系统中不存在所需的 `.so` 文件(如 `libllama.so` 和 `libcuda.so.1`),则会触发此错误。 2. **路径配置问题** 即使这些共享库存在于系统中,但如果它们不在系统的标准搜索路径 (`LD_LIBRARY_PATH`) 中,则也会导致加载失败。 3. **版本冲突** 动态库可能存在多个版本,而当前程序需要特定版本的库文件。如果安装的是其他版本,则可能导致无法正确加载。 --- #### 解决方案 ##### 方法一:确认并安装缺失的共享库 确保目标机器已安装所需的所有共享库文件。可以通过以下命令检查是否存在指定的库文件: ```bash ls /usr/lib | grep libllama.so ls /usr/lib | grep libcuda.so.1 ``` 如果没有发现对应文件,可以尝试重新编译或下载预构建的二进制文件。对于 `libllama.so`,可以从源码仓库获取最新版本并完成本地编译[^5]: ```bash git clone https://github.com/ggerganov/llama.cpp.git cd llama.cpp make sudo cp build/libllama.so /usr/local/lib/ ``` 针对 CUDA 库中的 `libcuda.so.1`,可通过 NVIDIA 提供的驱动程序或工具链进行安装[^4]: ```bash sudo apt update sudo apt install nvidia-driver-<version> sudo apt install cuda-libraries-<version> ``` > 替换 `<version>` 为实际支持的目标版本号。 ##### 方法二:调整环境变量以包含自定义路径 如果已经手动放置了某些共享库到非默认位置,需将其加入 `LD_LIBRARY_PATH` 变量以便程序能够定位到它们。例如: ```bash export LD_LIBRARY_PATH=/path/to/custom/libs:$LD_LIBRARY_PATH ``` 验证设置是否生效: ```bash ldd $(which python) | grep llm ``` ##### 方法三:修复潜在的版本兼容性问题 有时即使存在相同名称的共享库,但由于内部 ABI 不匹配仍会出现加载异常。此时建议切换至与现有软件栈完全一致的基础镜像或操作系统发行版。比如在 Linux 下推荐使用 Ubuntu LTS 版本作为开发平台,并保持 GPU 驱动始终处于最新状态。 另外值得注意的是,部分高级框架可能会额外绑定私有实现细节,因此务必参照官方文档说明执行操作步骤。 --- ### 示例代码片段 下面展示如何通过 Python 脚本来检测当前环境中是否存在必要组件: ```python import ctypes try: # 尝试加载共享对象 _ = ctypes.CDLL(&#39;libllama.so&#39;) except OSError as e: print(f"Failed to load &#39;libllama.so&#39;: {e}") try: _ = ctypes.CDLL(&#39;libcuda.so.1&#39;) except OSError as e: print(f"Failed to load &#39;libcuda.so.1&#39;: {e}") ``` --- #### 总结 综上所述,要彻底消除此类运行期错误,应从以下几个方面入手排查原因:一是核实所有必需资源均已部署到位;二是合理规划全局范围内的查找顺序;三是审慎处理因升级引发的功能退化现象。只有做到以上几点才能有效保障应用程序平稳运转。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值