6、RSEI 生态环境质量智能评估系统 (GEE App)

🌿 RSEI 生态环境质量智能评估系统 (GEE App)

平台: Google Earth Engine (GEE)
核心算法: 主成分分析 (PCA) / 遥感生态指数 (RSEI)

📖 项目简介

本项目是一个基于 Google Earth Engine 的自动化遥感生态指数 (RSEI) 计算工具。它集成了 绿度、湿度、热度、干度 四大生态指标,利用 主成分分析 (PCA) 技术自动构建 RSEI 模型。

相较于传统版本,本代码解决了以下痛点:

  1. 稳定性修复: 彻底解决了 GEE 中常见的 Dimensions mismatch (矩阵维度不匹配) 错误,采用“客户端权重计算 + 代数加权法”,确保 PCA 永不报错。
  2. 可视化增强: 地图支持 5 层叠加显示 (RSEI + 4个分量),并配备了专属图例。
  3. 多维图表: 内置 3 类统计图表(直方图、均值对比图、分布曲线图),一键分析生态短板。
  4. 智能校正: 自动检测特征向量方向,确保 RSEI 数值逻辑正确 (数值越高,生态越好)。

🛠️ 主要功能

1. 四大生态指标自动计算

脚本自动处理 Landsat 8 影像,计算以下指标:

  • 🟢 绿度 (Greenness): 使用 NDVI (归一化植被指数) 表征植被覆盖。
  • 💧 湿度 (Wetness): 使用 Tasseled Cap Wet (缨帽变换湿度分量) 表征土壤/植被含水量。
  • 🔥 热度 (Heat): 使用 LST (地表温度) 表征城市热岛效应。
  • 🏜️ 干度 (Dryness): 使用 NDBSI (建筑指数 SI + 裸土指数 IBI) 表征地表硬化程度。

2. 交互式分析面板

  • 时间滑块: 自由选择年份 (2014-2023),默认筛选夏季 (6-9月) 影像以获得最佳植被表现
    在这里插入图片描述

  • 图层管理: 可在地图上自由切换查看单一分量,通过颜色直观判断区域是“太热”还是“太干”。
    在这里插入图片描述

  • 图表看板:

    • RSEI 分布图: 了解整体生态得分分布。
      在这里插入图片描述

    • 分量均值对比: 快速识别该区域的主要生态制约因素。
      在这里插入图片描述

    • 数值分布曲线: 详细查看各指标的数据分布形态。
      在这里插入图片描述

3. 结果导出

支持一键将计算好的 RSEI 结果导出为 GeoTIFF 格式至 Google Drive,保留地理坐标,方便在 ArcGIS/QGIS 中进一步制图。
在这里插入图片描述


🚀 快速开始

1. 设置分析区域 (ROI)

代码默认使用了我的测试 Asset ID,请务必修改为你自己的区域,否则可能无法运行或权限报错。

找到代码第 13 行:

// ❌ 原始代码 (可能无权限)
var roi = ee.FeatureCollection("projects/maxhecheng/assets/haidian");

// ✅ 修改方式 1: 使用你上传的 Shapefile (Asset ID)
var roi = ee.FeatureCollection("users/你的用户名/你的文件名");

// ✅ 修改方式 2: 使用简单的几何点缓冲区 (测试用)
var roi = ee.Geometry.Point([116.3, 39.95]).buffer(10000); 

2. 运行代码

  1. 将完整代码复制到 GEE Code Editor
  2. 点击上方的 Run 按钮。
  3. 在右侧面板选择年份,点击 “🚀 开始全指标分析”

📊 结果解读指南

图层颜色说明

图层颜色条含义
RSEI (生态指数)红 ➝ 绿绿色越深,生态质量越
绿度 (NDVI)白 ➝ 绿绿色越深,植被越茂密
湿度 (Wet)灰 ➝ 蓝蓝色越深,水分越充足
热度 (LST)蓝 ➝ 红红色越深,地表温度越 (负面)
干度 (Dry)绿 ➝ 红红色越深,建筑/裸土越 (负面)

图表分析技巧

  • 柱状图 (均值对比):
    • 如果 干度 (Dry) 柱子最高:说明该区域建筑密度大,硬化严重。
    • 如果 热度 (Heat) 柱子最高:说明热岛效应是主要问题。
    • 如果 绿度 (Green) 柱子很低:说明缺绿。
  • 曲线图:
    • 理想的生态城市,绿度和湿度曲线应偏右 (高值),热度和干度曲线应偏左 (低值)。

GEE界面总览

在这里插入图片描述


⚠️ 常见问题 (FAQ)

Q: 为什么提示 “No images found”?
A:可能是该年份在选定区域云量过多 (代码默认过滤 >30% 云量)。

  • 解决方法: 尝试更换年份,或在代码中调整 CLOUD_COVER 阈值,或放宽日期范围。

Q: 为什么 RSEI 只有 0 或 1?
A: 这种情况通常是极端值归一化导致的。

  • 解决方法: 代码中已设置 bestEffort: true 和较大的 scale 来缓解此问题。如果依然出现,说明区域内可能有异常像素(如大面积水体或云)。

Q: 为什么 PC1 计算不会报错了?
A: 传统写法直接在 Server 端进行矩阵相乘,容易因像素对齐问题导致 Dimensions mismatch。本版本采用了混合计算法:先在 Client 端获取特征向量权重,再用简单的代数加权公式生成 PC1,稳定性提升 100%。


📝 引用与致谢

本算法基于 徐涵秋教授 提出的 RSEI 模型 (Remote Sensing Ecological Index)。

  • Reference: Xu, H. (2013). A remote sensing urban ecological index and its application. Acta Ecologica Sinica.

代码分享

https://github.com/mojoin/GEE-
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值