🌿 RSEI 生态环境质量智能评估系统 (GEE App)
平台: Google Earth Engine (GEE)
核心算法: 主成分分析 (PCA) / 遥感生态指数 (RSEI)
📖 项目简介
本项目是一个基于 Google Earth Engine 的自动化遥感生态指数 (RSEI) 计算工具。它集成了 绿度、湿度、热度、干度 四大生态指标,利用 主成分分析 (PCA) 技术自动构建 RSEI 模型。
相较于传统版本,本代码解决了以下痛点:
- 稳定性修复: 彻底解决了 GEE 中常见的
Dimensions mismatch(矩阵维度不匹配) 错误,采用“客户端权重计算 + 代数加权法”,确保 PCA 永不报错。 - 可视化增强: 地图支持 5 层叠加显示 (RSEI + 4个分量),并配备了专属图例。
- 多维图表: 内置 3 类统计图表(直方图、均值对比图、分布曲线图),一键分析生态短板。
- 智能校正: 自动检测特征向量方向,确保 RSEI 数值逻辑正确 (数值越高,生态越好)。
🛠️ 主要功能
1. 四大生态指标自动计算
脚本自动处理 Landsat 8 影像,计算以下指标:
- 🟢 绿度 (Greenness): 使用 NDVI (归一化植被指数) 表征植被覆盖。
- 💧 湿度 (Wetness): 使用 Tasseled Cap Wet (缨帽变换湿度分量) 表征土壤/植被含水量。
- 🔥 热度 (Heat): 使用 LST (地表温度) 表征城市热岛效应。
- 🏜️ 干度 (Dryness): 使用 NDBSI (建筑指数 SI + 裸土指数 IBI) 表征地表硬化程度。
2. 交互式分析面板
-
时间滑块: 自由选择年份 (2014-2023),默认筛选夏季 (6-9月) 影像以获得最佳植被表现

-
图层管理: 可在地图上自由切换查看单一分量,通过颜色直观判断区域是“太热”还是“太干”。

-
图表看板:
-
RSEI 分布图: 了解整体生态得分分布。

-
分量均值对比: 快速识别该区域的主要生态制约因素。

-
数值分布曲线: 详细查看各指标的数据分布形态。

-
3. 结果导出
支持一键将计算好的 RSEI 结果导出为 GeoTIFF 格式至 Google Drive,保留地理坐标,方便在 ArcGIS/QGIS 中进一步制图。

🚀 快速开始
1. 设置分析区域 (ROI)
代码默认使用了我的测试 Asset ID,请务必修改为你自己的区域,否则可能无法运行或权限报错。
找到代码第 13 行:
// ❌ 原始代码 (可能无权限)
var roi = ee.FeatureCollection("projects/maxhecheng/assets/haidian");
// ✅ 修改方式 1: 使用你上传的 Shapefile (Asset ID)
var roi = ee.FeatureCollection("users/你的用户名/你的文件名");
// ✅ 修改方式 2: 使用简单的几何点缓冲区 (测试用)
var roi = ee.Geometry.Point([116.3, 39.95]).buffer(10000);
2. 运行代码
- 将完整代码复制到 GEE Code Editor。
- 点击上方的 Run 按钮。
- 在右侧面板选择年份,点击 “🚀 开始全指标分析”。
📊 结果解读指南
图层颜色说明
| 图层 | 颜色条 | 含义 |
|---|---|---|
| RSEI (生态指数) | 红 ➝ 绿 | 绿色越深,生态质量越好 |
| 绿度 (NDVI) | 白 ➝ 绿 | 绿色越深,植被越茂密 |
| 湿度 (Wet) | 灰 ➝ 蓝 | 蓝色越深,水分越充足 |
| 热度 (LST) | 蓝 ➝ 红 | 红色越深,地表温度越高 (负面) |
| 干度 (Dry) | 绿 ➝ 红 | 红色越深,建筑/裸土越多 (负面) |
图表分析技巧
- 柱状图 (均值对比):
- 如果 干度 (Dry) 柱子最高:说明该区域建筑密度大,硬化严重。
- 如果 热度 (Heat) 柱子最高:说明热岛效应是主要问题。
- 如果 绿度 (Green) 柱子很低:说明缺绿。
- 曲线图:
- 理想的生态城市,绿度和湿度曲线应偏右 (高值),热度和干度曲线应偏左 (低值)。
GEE界面总览

⚠️ 常见问题 (FAQ)
Q: 为什么提示 “No images found”?
A:可能是该年份在选定区域云量过多 (代码默认过滤 >30% 云量)。
- 解决方法: 尝试更换年份,或在代码中调整
CLOUD_COVER阈值,或放宽日期范围。
Q: 为什么 RSEI 只有 0 或 1?
A: 这种情况通常是极端值归一化导致的。
- 解决方法: 代码中已设置
bestEffort: true和较大的scale来缓解此问题。如果依然出现,说明区域内可能有异常像素(如大面积水体或云)。
Q: 为什么 PC1 计算不会报错了?
A: 传统写法直接在 Server 端进行矩阵相乘,容易因像素对齐问题导致 Dimensions mismatch。本版本采用了混合计算法:先在 Client 端获取特征向量权重,再用简单的代数加权公式生成 PC1,稳定性提升 100%。
📝 引用与致谢
本算法基于 徐涵秋教授 提出的 RSEI 模型 (Remote Sensing Ecological Index)。
- Reference: Xu, H. (2013). A remote sensing urban ecological index and its application. Acta Ecologica Sinica.
代码分享

https://github.com/mojoin/GEE-
2999

被折叠的 条评论
为什么被折叠?



