ICLR2025 Soptlight |CausalRivers:因果发现新基准,全球最大真实时间序列数据集来袭!

本篇论文来自ICLR2025 Soptlight文章,文章提出了一个新基准套件-CausalRivers,是目前最大的真实世界时间序列因果发现基准

顶会技术基本认可度都高,推荐阅读,全部77篇ICLR2025前沿时序合集小时已经整理好了,关注工🀄昊“时序大模型”发送“资料”扫码回复“ICLR2025时序合集”即可自取~其他顶会时序合集也可以回复相关顶会名称自取哈~

文章信息

论文名称:CausalRivers - Scaling up benchmarking of causal discovery for real-world time-series

论文作者:Gideon Stein, Maha Shadaydeh, Jan Blunk, Niklas Penzel, Joachim Denzler

图片

研究背景

因果发现虽在理论上取得显著进展,但缺乏真实世界的评估,现有研究多依赖合成数据或稀疏的真实案例,且依赖强理论假设(如因果充分性、线性性、无隐藏混淆因素等)。 真实世界因果结构复杂,导致实践者难以选择合适的因果发现策略。 而现有基准数据集存在缺陷,如时间序列数据少、真实世界数据节点有限,难以支撑鲁棒的方法评估。

因此作者提出一个新的基准套件-CausalRivers,以应付上述难题。

图片

模型框架

CausalRivers 基准套件主要由三个部分组成:

图片

数据集详情:包含德国东部(666 个测量站)和巴伐利亚州(494 个测量站)的河流流量数据,时间跨度为 2019 - 2023 年,时间分辨率 15 分钟;还包括易北河洪水事件数据,以体现分布偏移。

因果真值图:基于多源信息(如维基百科爬取内容、遥感数据等)构建了德国东部和巴伐利亚两个因果真值图,共含超 1000 个节点。支持采样生成数千个子图,可模拟多种场景,如单汇点、根因、隐藏混淆等。

附加工具与资源:提供子图采样工具(可按节点数、地理距离等筛选)、气候条件评估工具(结合德国气象局数据)、预处理工具、数据加载器、三个朴素基线策略(交叉相关法 CC、反向物理法 RP 及其组合 Combo)以及相关教程。

图片

图片

实验数据

设置了三个不同的实验来检测效果:

(实验一)不同图结构下的方法评估:

  • 测试了 VAR(线性 Granger 因果)、Varlingam、Dynotears 等经典方法,以及 CDMI、CP 等深度学习方法。

  • 结果显示:简单基线(如 RP)性能接近部分复杂方法;线性方法(VAR)表现稳健;深度学习方法未体现显著优势。

(实验二)时间序列子采样影响:

  • 对比完整时间序列、无雨期、洪水期数据的方法性能,发现子序列选择对结果影响显著,且依赖具体方法(如 Dynotears 在无雨期表现差)。

(实验三)领域自适应探索:

  • 通过在巴伐利亚数据上微调因果预训练模型(CP),其在德国东部数据集上的性能提升,证明领域自适应对因果发现的有效性。

图片

图片

图片

小小总结

CausalRivers 是目前最大的真实世界时间序列因果发现基准,为方法评估提供了标准化环境。 实验揭示现有方法在真实场景中的局限性,强调需加强鲁棒性研究。 CausalRivers数据集有望推动因果发现及相关领域的发展。

通过提供大规模、高复杂度的真实数据,CausalRivers 填补了因果发现领域缺乏实用基准的空白,为基准驱动的方法创新奠定了基础。

全部77篇ICLR2025前沿时序技术小时都整理好了~欢迎关注工🀄昊“时序大模型”发送“资料”扫码回复“ICLR2025时序合集”自取~其他顶会前沿时序合集也可以回复对应会议名自取哈(AAAI25,ICML25,ICDE25等

图片

关注小时,持续学习前沿时序技术!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值