ICLR2025 Soptlight |ZAPBench:首个脊椎动物全脑预测基准,7 万神经元动态预测揭开大脑奥秘!

本篇论文来自ICLR2025Soptlight文章,是Google Research、哈佛大学等机构的研究团队联合提出的首个,针对脊椎动物全脑神经元活动预测,用于全脑活动预测的基准-ZAPBench

了解顶会最新技术,紧跟科研潮流,研究与写作才能保持在时代一线,全部77篇ICLR2025前沿时序合集小时已经整理好了,关注工🀄昊“时序大模型”发送“资料”扫码回复“ICLR2025时序合集”即可自取~其他顶会时序合集也可以回复相关顶会名称自取哈~

文章信息

论文名称:ZAPBench: A Benchmark for Whole-Brain Activity Prediction in Zebrafish

论文作者:Jan-Matthis Lueckmann, Alexander Immer, Alex Bo-Yuan Chen, Peter H. Li, Mariela D. Petkova, Nirmala A. Iyer, Luuk Willem Hesselink, Aparna Dev, Gudrun Ihrke, Woohyun Park, Alyson Petruncio, Aubrey Weigel, Wyatt Korff, Florian Engert, Jeff W. Lichtman, Misha B. Ahrens , Michał Januszewski & Viren Jain

图片

研究背景

在自然科学领域,预测系统未来行为是检验对系统理解程度的核心标准。受此启发,研究团队聚焦脊椎动物大脑,提出了一个关键问题:给定几秒的神经元活动观测数据,能否准确预测后续约 30 秒的活动?

为探索这一问题及预测的基本极限,团队推出了斑马鱼活动预测基准-ZAPBench,是通过该基准严谨评估各类单细胞分辨率神经活动模拟或预测方法。

图片

模型框架

ZAPBench 由数据集、基准测试任务、评估指标和基线模型四部分组成:

数据集:

数据采集:选用 6 天龄的斑马鱼幼体,因其通体透明,便于光片显微镜无创捕捉神经活动。实验时将斑马鱼置于虚拟现实环境,使其经历九种视觉刺激,如模拟水流的 GAIN、随机点运动的 DOTS 等,这些刺激涵盖自然生存场景,旨在诱发不同行为模式。利用光片荧光显微镜(LSFM),以 406nm×406nm×4µm×914ms 的分辨率,记录全脑活动,形成 2048×1328×72×7879 体素的 4D 原始数据 。

数据处理:

  • 对齐校正:由于记录过程中斑马鱼大脑会发生弹性变形,导致神经元空间位置变化。为此开发了自定义对齐流程,先进行平移预对齐,再通过估计密集光流场并利用弹性弹簧网格正则化,校正每一帧图像,使神经元位置准确对齐。

  • 细胞分割:为准确预测神经元活动轨迹,采用基于深度学习的定制分割流程。手动标注约 2000 个神经元作为训练数据,运用 Flood Filling Networks进行分割,最终得到 71,721 个神经元的分割结果,并从对齐后的体积中提取每个神经元的活动轨迹。

数据特点与优势:

  • 单细胞分辨率:能够精确捕捉每个神经元的活动,提供 71,721 个神经元的动态轨迹,通过体素级分割技术,精确提取神经元在不同刺激下的钙信号变化,形成时间序列数据。

  • 多模态数据形态:既包含原始 3D 体积视频,保留了神经元的空间位置关系,也提供处理后的单细胞活动轨迹,兼顾空间细节与计算效率。

  • 与结构信息关联:用于活动记录的斑马鱼大脑正进行突触级解剖映射,未来可将详细的结构信息整合到预测方法中,构建 “结构 - 功能” 关联的完整闭环。

图片

基准测试任务:

根据过去的神经元活动来预测未来的大脑活动,分为基于较短时间(几秒)的上下文窗口进行预测和基于较长时间(几分钟)的上下文窗口进行预测,预测的目标是在未来大约 30 秒内,预测出神经元的活动状态。

评估指标:

评估指标:采用平均绝对误差(MAE)作为评估预测模型性能的指标。通过计算预测值与实际记录值之间的平均绝对差异,衡量模型预测的准确性。MAE 能直观反映预测结果与真实情况的偏离程度,数值越低,表明模型预测越准确 。

数据划分与使用:按刺激条件将数据集进行划分,每个条件的数据按 70%、10%、20% 的比例分别作为训练集、用于模型选择的验证集和评估模型的测试集。特意将 TAXIS 条件数据完全保留,仅用于测试,以确保测试结果的客观性和模型泛化能力的有效评估 。

基线模型:

ZAPBench定义了两种基线模型,均值(Mean)基线刺激(Stimulus)基线

均值基线:基于过去神经元活动的平均值进行预测。该模型构建简单,无需复杂训练,能快速得到预测结果,为复杂模型提供了基础的性能参照。

刺激基线:根据实验中刺激呈现的规律构建,用于捕捉因刺激重复出现而产生的神经元活动模式。它依据测试时的刺激相位进行查找预测。具体操作是将条件按刺激重复进行分块、对齐,计算每个神经元的平均响应,并将该刺激诱发的响应作为预测结果。

图片

实验数据

模型与基线:评估了多种模型,包括时间序列模型(Linear、TiDE、TSMixer、Time-Mix)和 volumetric 视频预测模型(U-Net),并设置两种无参数基线(Mean 基线和 Stimulus 基线)用于性能校准。

8个主要数据:

模型性能优于基线:多数模型在总体平均 MAE 上超过 naive 基线,但仍有提升空间。

基线的校准作用:不同刺激条件下活动水平和误差差异大,基线有助于跨条件比较性能。

刺激基线的竞争力:在短上下文 32 步预测中,部分模型(53/120 次运行)未超过刺激基线,尤其在 FLASH、TURNING 等条件上表现强劲 。

长上下文的优势:长上下文模型在预测更远步数时性能更优,但单步预测中 U-Net 在长上下文下表现较差,推测与训练数据量有关。

模型差异:短上下文模型性能差异较大,长上下文下 TiDE、TSMixer 等模型性能接近,Linear 模型较差。

跨神经元信息利用不足:时间序列模型未充分利用跨神经元信息,TiDE 去除空间协变量后性能更优。

视频模型表现:U-Net 在短上下文总体和单步预测中表现最佳,但在长预测 horizon 优势不明显。

误差分布不均:误差在大脑中呈集群分布,背前侧(类似哺乳动物海马体)MAE 较高。

图片

图片

小小总结

ZAPBench提供了经对齐和分割的斑马鱼全脑单细胞分辨率活动数据集。 构建了高维度多元活动轨迹预测基准,首次引入生物医学领域 4D volumetric 数据集用于预测。为全脑活动预测提供了标准化框架,推动神经科学与机器学习的交叉研究。

全部77篇ICLR2025前沿时序技术小时都整理好了~欢迎关注工🀄昊“时序大模型”发送“资料”扫码回复“ICLR2025时序合集”自取~其他顶会前沿时序合集也可以回复对应会议名自取哈(AAAI25,ICML25,ICDE25等

关注小时,持续学习前沿时序技术!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值