本篇论文来自KDD2025第二轮,最新前沿时序技术,文章提出了一个模型无关框架-Enhancer,通过时序-关系元学习框架,解决股票预测中的 TDS 和 RDS 问题。
了解顶会最新技术,紧跟科研潮流,研究与写作才能保持在时代一线,全部73篇KDD2025(1+2轮)前沿时序合集小时已经整理好了,在功🀄浩“时序大模型”发送“资料”扫码回复“KDD2025时序合集”即可自取~其他顶会时序合集也可以回复相关顶会名称自取哈~(AAAI25,ICLR25,ICML25等)
文章信息
论文名称:Enhancer: A Distribution-Aware Framework with Temporal-Relational Meta-Learning for Stock Prediction
论文作者:Weijun Chen、Shun Li、Heyuan Wang、Tengjiao Wang
研究背景
股票预测在投资决策和组合管理中至关重要,但金融市场作为复杂交互系统,存在时序动态和关系结构的演化特性,传统模型依赖的独立同分布假设难以成立,面临两大核心挑战:
时序分布偏移(TDS):现有方法通过分布推断缓解偏移,但缺失细粒度时间点信息,难以捕捉短期价格波动规律。
关系分布偏移(RDS):股票间关联具有动态性,静态关系图或无理论保障的动态图学习无法应对关联模式的系统性变化,导致模型泛化能力弱。
因此作者提出了Enhancer框架已解决上述问题。
模型框架
Enhancer 采用元学习架构,由两大核心模块组成:
1. 时序元学习器(TML)
-
Expert 分布:通过实例归一化和注意力机制构建输入与输出分布间的中间过渡分布,减轻 TDS 影响。
-
RPPsAtt 机制:基于反应点过程模型,区分历史时间点对当前的兴奋性和抑制性影响,并通过衰减项量化不同时间差的交互作用,生成细粒度时序表示。
2. 关系元学习器(RML)
-
动态关系逼近:用矩阵多项式近似每个时间步的股票关系图,通过动态上下文匹配选择最优关系实体。
-
解耦注意力网络:将关系信息分离为不变部分(P₁) 和变体部分(Pᵥ),P₁具有稳定预测能力,Pᵥ易受 RDS 影响。
-
干预机制:基于因果理论的 do - 演算,通过随机打乱变体关系分布,强制模型依赖不变关系信息进行预测。
融合与优化:
采用简化图卷积(SGC)融合时序表示(Dₜ)与不变关系表示(P₁),生成最终特征。
双级优化策略:先通过元训练损失(Lₘ₋ₜᵣ)优化下游预测器,再固定预测器参数,通过元验证损失(Lₘ₋ᵥₐₗ)优化 TML 和 RML。
在模型框架上有三个创新点:
-
首次聚焦时序 - 关系分布偏移问题:提出模型无关框架 Enhancer,可适配任意下游预测器,提升长期投资收益。
-
创新时序元学习器(TML):引入反应点过程注意力(RPPsAtt),解决传统时序分布推断中细粒度时间点信息缺失的问题。
-
创新关系元学习器(RML):设计逼近 - 干预(Ant)机制,通过矩阵多项式逼近动态关系图并分离不变 / 变体关系信息,首次在量化投资中系统缓解 RDS。
实验数据
数据集:CSI300、CSI500、NASDAQ、TSE 四大长期股票数据集,覆盖 2014-2020 年交易数据。
任务:股票趋势预测(STP)和股票投资推荐(SIR)。
整体性能:Enhancer在利润率、夏普比率平均提升 29.3%、18.54%
股票趋势预测:年化收益、夏普比率,平均提升 40.92%、29.47%
投资推荐:投资回报率、夏普比率,平均提升 17.68%、7.61%
消融实验验证:
-
Expert 分布:作为分布过渡桥梁,有效减轻时序偏移影响。
-
RPPsAtt:通过时序点重排序增强短期预测能力,是 TML 的核心组件。
-
动态上下文匹配(DCM):为关系解耦提供基础,影响后续干预效果。
-
干预机制(Int):对性能影响最大,是缓解 RDS 的关键,移除后收益显著下降。
小小总结
Enhancer 通过时序 - 关系元学习架构,突破了传统模型在分布偏移问题上的局限。其在多数据集和不同下游预测器上的一致优异表现,验证了框架的有效性和通用性,为动态金融市场预测提供了新的技术范式。
2025顶会前沿时序合集,简介处关注,回复关键字即可自取~
关注小时,持续学习前沿时序技术!