2、Python Labelme标注的json与LabelImg标注的xml 数文件相互转换、以及YOLO数据集 VOC数据格式、coco数据集(仅适用矩形框)含实例分割的coco和labelme互转

本文详细介绍了如何使用Python将Labelme的JSON标注转换为LabelImg的XML格式,以及如何在实例分割场景下进行Labelme与COCO数据集之间的转换。此外,还提到了YOLO和VOC数据集的转换方法,适用于处理四个坐标点的标注,对于多坐标点的情况需进行适当修改。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇博客的主要目的是:(注意 只适用4个坐标点,多坐标需要修改一下)

labelme2coco----coco2labelme 实例分割直接参考这篇博客的片段

45、实例分割的labelme数据集转coco数据集以及coco数据集转labelme数据集_sxj731533730的博客-CSDN博客

tensorflow 的训练数据是图片+json;而caffe训练集是图片+xml;

因此想使用python 完成他人已经在的json标注好的数据集直接转xml数据;json--->xml (Labelme====>>>LabelImg)

首先提供的Labelme是生成的json串:如下图

{
  "version": "3.6.16",
  "flags": {},
  "shapes": [
    {
      "label": "B",
  
<think>好的,我现在需要帮助用户将实例分割JSON转换XML格式。首先,我得回忆一下相关的引用内容,看看有没有现有的方法或者工具。用户提到的引用[2][3]提到了JSONXML转换,比如使用Python脚本处理LabelmeJSON转成LabelImgXML格式。不过实例分割据可能包多边形坐标,而不是边界框,所以需要特别注意。 首先,实例分割JSON结构可能目标检测的不同。例如,LabelmeJSON文件里每个对象可能有多个点组成的多边形,而不是简单的xmin, ymin等。XML格式如PASCAL VOC通常用<object>标签,里面包<name><polygon>的多个点坐标。所以转换的关键是提取这些多边形点并写入XML的相应位置。 接下来,我需要确定用户使用的JSON结构。假设用户的据类似于Labelme,每个标注有shapes字段,包每个对象的pointslabel。然后需要将这些points转换XML中的<polygon>节点,每个点对应一个xy坐标。 然后,考虑如何用Python解析JSON。使用json库加载文件,遍历每个图像对应的标注据。对于每个对象,提取labelpoints,然后将这些点格式化成XML中的<point>元素。同时,可能需要处理图像的大小信息,通常在JSON中有imageWidthimageHeight,这些需要写入XML的<size>部分。 另外,需要确保XML的结构符合目标格式,比如PASCAL VOC。可能需要创建根节点<annotation>,然后添加文件夹、文件名、路径、大小等信息。每个对象包<name><polygon>,每个点有xy。 还需要处理文件写入,使用xml.etree.ElementTree来构建XML树,并保存为文件。可能需要遍历所有JSON文件,逐个转换。 然后,测试代码是否正确。例如,读取一个样本JSON,检查转换后的XML是否包正确的多边形点标签。如果有错误,比如坐标超出图像范围,可能需要调整或验证。 最后,提醒用户可能需要根据实际JSON结构进行调整,比如字段名称的不同,或者处理其他标注形式如掩膜。同时,推荐使用现有的工具或库如果适用,比如参考引用中的脚本,但可能需要修改以适应实例分割的需求。</think>根据实例分割数据格式的特点,JSONXML可分为以下步骤: ### 一、JSON据结构分析 实例分割JSON据通常包: - 图像信息:`imagePath`, `imageWidth`, `imageHeight` - 标注对象:`shapes`组,每个元素包: - `label`:类别名称 - `points`:多边形坐标组(如`[[x1,y1], [x2,y2], ...]`) - `shape_type`:标注类型(多边形/矩形等) 示例JSON结构: ```json { "imagePath": "image1.jpg", "imageWidth": 800, "imageHeight": 600, "shapes": [ { "label": "cat", "points": [[100,200], [150,300], [200,250]], "shape_type": "polygon" } ] } ``` ### 二、XML目标格式规范 需要生成符合PASCAL VOC标准的XML格式: ```xml <annotation> <filename>image1.jpg</filename> <size> <width>800</width> <height>600</height> <depth>3</depth> </size> <object> <name>cat</name> <polygon> <x1>100</x1> <y1>200</y1> <x2>150</x2> <y2>300</y2> ... </polygon> </object> </annotation> ``` ### 三、Python转换代码实现 ```python import json import xml.etree.ElementTree as ET from xml.dom import minidom def json_to_xml(json_path, xml_path): # 读取JSON文件 with open(json_path) as f: data = json.load(f) # 创建XML根节点 root = ET.Element("annotation") # 添加文件信息 ET.SubElement(root, "filename").text = data["imagePath"] size = ET.SubElement(root, "size") ET.SubElement(size, "width").text = str(data["imageWidth"]) ET.SubElement(size, "height").text = str(data["imageHeight"]) ET.SubElement(size, "depth").text = "3" # 默认RGB通道 # 处理每个实例标注 for shape in data["shapes"]: obj = ET.SubElement(root, "object") ET.SubElement(obj, "name").text = shape["label"] polygon = ET.SubElement(obj, "polygon") # 添加多边形坐标点 for i, (x, y) in enumerate(shape["points"], 1): ET.SubElement(polygon, f"x{i}").text = str(x) ET.SubElement(polygon, f"y{i}").text = str(y) # 美化输出格式 xml_str = minidom.parseString(ET.tostring(root)).toprettyxml() with open(xml_path, "w") as f: f.write(xml_str) # 使用示例 json_to_xml("input.json", "output.xml") ``` ### 四、关键注意事项 1. **坐标格式处理**:JSON中的坐标通常是浮点比例,需根据实际需求决定是否转换为整像素坐标[^3] 2. **标签验证**:建议添加验证逻辑确保`shape_type`为`polygon` 3. **多实例处理**:代码已支持多个`object`节点的生成 4. **扩展性**:可添加`<segmented>`等VOC扩展字段
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sxj731533730

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值