Kafka工作流程
1.Kafka将消息按Topic进行分类,每条message由三个属性组成。
offset:表示message在当前Partition(分区)中的偏移量,是一个逻辑上的值,唯一确定了Partition中的一条message,可以简单的认为是一个id;
MessageSize:表示message内容data的大小;
data:message的具体内容;
2.在整个kafka架构中,生产者和消费者采用发布和订阅的模式,生产者生产消息,消费者消费消息,它俩各司其职,并且都是面向topic的。(需要注意:topic是逻辑上的概念,而partition是物理上的概念,每个partition对应于一个log文件,该log文件中存储的就是producer生产的数据)
3.Producer生产的数据会被不断追加到该log文件末端,且每条数据都有自己的offset。
4.消费者组中的每个消费者,都会实时记录自己消费到了哪个offset,这样当出现故障并恢复后,可从这个offset位置继续进行消费,避免漏掉数据或者重复消费。
文件存储机制
文件存储结构及命名规则
在kafka的设计之初,考虑到了生产者生产的消息不断追加到log文件末尾后导致log文件过大的情况,所以采用了分片和索引机制,具体来说就是将每个partition分为多个segment。每个segment对应三个文件:.index文件、.log文件、.timeindex文件。其中.log和.index文件夹下,该文件夹的命名规则为:topic名称+分区序号。
例如,csdn这个topic有2个分区,则其对应的文件夹为csdn-0,csdn-1;
如果我们打开csdn-0这个文件夹,会看到里面的文件如下:
`00000000000000000000.index
00000000000000000000.log
00000000000000150320.index
00000000000000150320.log`* 1
* 2
* 3
* 4
通过这个文件夹下有两个log,我们可以得出结论,这个partition有2个segment。
文件命名规则:partition全局的第一个segment从0开始,后续每个segment文件名为上一个segment文件最后一条消息的offset值,数值大小为64位,20位数字字符长度,没有数字用0填充。
注意:index 文件并不是从0开始,也不是每次递增1的,这是因为 Kafka 采取稀疏索引存储的方式,每隔一定字节的数据建立一条索引,它减少了索引文件大小,使得能够把 index 映射到内存,降低了查询时的磁盘 IO 开销,同时也并没有给查询带来太多的时间消耗。
下面引用一张旧的kafka存储机制图,不带.timeindex 文件: