多类别分类算法:一对一(OvO)和一对剩余(OvR)

    本文介绍了多类别分类中的OvO(一对一)和OvR(一对剩余)策略,详细阐述了两种策略的原理及Python实现。OvO将多类别问题转化为K(K-1)/2个二分类问题,而OvR则将其转化为K个二分类问题,分别以一个类别为正例,其余为负例。示例中展示了使用SVM和逻辑回归作为二分类器的应用。

    摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    多类别分类是机器学习中常见的任务之一。在处理多类别分类问题时,经常会遇到需要将样本分为多个不同的类别的情况。一对一(OvO)和一对剩余(OvR)是两种常用的多类别分类策略。本文将详细介绍这两种策略,并提供相应的源代码。

    一、一对一(OvO)策略

    一对一(One-vs-One,简称OvO)策略是将多类别分类问题转化为多个二分类子问题的方法。具体而言,对于K个类别,OvO策略会构建K(K-1)/2个分类器,每个分类器用于区分两个类别。在预测阶段,通过投票或概率加权的方式来确定最终的类别。

    下面是使用OvO策略进行多类别分类的Python示例代码:

    from sklearn.multiclass import OneVsOneClassifier
    from sklearn.svm import SVC
    from sklearn.datasets import load_iris
    

    登录后您可以享受以下权益:

    ×
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值
    程序员都在用的中文IT技术交流社区

    程序员都在用的中文IT技术交流社区

    专业的中文 IT 技术社区,与千万技术人共成长

    专业的中文 IT 技术社区,与千万技术人共成长

    关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

    关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

    客服 返回顶部