绪论
1、阐述人工智能的三次浪潮和三次低谷
浪潮:56达特茅斯成立~69AI会议70创刊 形成期
80年代神经网络
90年代深蓝至今
低谷:73 James Thrills报告 76-80 不好用,太超前
82pc性能,第五代计算机失败
90 google替代cyc
2、阐述人工智能的三种学派
行为学派 动态动作捕捉
符号学派 计算机科学模拟
结构学派 神经网络 大数据
3、阐述三种学习方式
规则 解释性强,数据库难构建
数据 解释性不强
问题 经验中进行持续学习
搜索
1、介绍一下open和closed表
open表中保存已生成但未扩展的所有节点
closed表中保存所有已访问并扩展的结点
open表中按照估值函数的大小,先扩展小的节点
2、BFS DFS实现
BFS节点一个个进队列,出队列时将其后继节点也放入队列
DFS递归压栈
3、介绍一下对抗搜索
又称博弈搜索,一方max一方min的零和博弈
minmax算法+alphabeta剪枝
monte carlo算法4步
选择 扩展 模拟 反向传播
4、启发式搜索
A*算法与A算法 估价函数fn=gn+hn 利用open close表记录并扩展
逻辑与推理
1、归结原理大题
4步骤:(1)求取子句集 (2)消解推理规则 (3)求取带变量的消解式 (4)消解反演求解
2、除了归结推理以外还有什么推理方式?
基于规则的演绎推理
(1)if then规则获得断言 (2)将规则引用于事实获得新的事实
(3)目标文字如果和图中文字相同,生成弧 (4)到达解图,over
形式:正向、逆向,双向
3、请阐述如何建立知识图谱和知识图谱的推理方式
知识图谱的建立:
属性识别然后填充 通过机器学习和深度学习方式获得最终知识图谱
推理方法:2种 归纳推理和路径排序
归纳推理:
FOIL序贯覆盖方法实现规则推理
效果:输入目标P,P训练样例和知识 输出推导到P的规则路径
方法:通过不断为目标增加前提约束谓词,使构建的规则不含反例为止
路径排序:
抽取特征并定义特征值
进行特征计算
训练分类器
扩充知识图谱
4、阐述一下不确定性推理的基本问题和常用方法
基本问题
(1)不确定性怎么表示?如何度量?
证据和知识具有不确定性,需要我们使用不确定性算法
(2)不确定性算法和阈值
不确定性算法:用于计算双方匹配相似程度的算法
阈值:设定相似的上限
(3)组合证据不确定的算法
最大最小方法、概率方法、Einstein方法+有界方法
(4)不确定性传递
每一步要保证传递的好,多步推理要保证初始结论能传给最终结论
(5)证据不确定性合成
不确定性推理的算法 PBTEV
(1)概率方法
(2)主观Bayes
(3)可信度方法
可信度:根据经验获得的,C-F模型
(4)证据理论
概率分配函数
信任函数
似然函数
概率分配函数的正交和(概率组合)
(5)模糊推理
模糊集合 运算 推理 决策
进化算法
1、智能优化算法包括哪两种?
进化算法和群智能算法
2、生物遗传的4个元素
染色体(info 基因(unit 等位基因(value 基因座(pos
3、进化算法的设计原则:ur收sb
适用 可靠 收敛 稳定 生物类比
4、进化算法中我们主要实践了遗传算法,请你阐述一下遗传算法的过程和细节:
作用:解决复杂的非线性优化问题
思想:从多个解开始通过一定法则迭代产生新的解
特点:数学要求不高,容易并行,个体间信息交换好,灵活性强适用性好
总体过程:
确定基因的编码方式 进行初始种群设定 确定适应度函数并计算每个个体的适应度 若满足stop else 选择适应度高的进行复制 交叉 变异 回到适应度计算
encode init fitness copy reproduction biohazard(整活而已)
细节分析:
encode编码方法(pros cons)
(1)二进制编码
(2)Gray编码(对二进制编码进行一次变换)
实数编码
多参数级联编码
init种群设定
太小局部最优 太大收敛太慢
模式定理告诉我们M^3比较好
fitness目标函数映射成适应度函数
解决欺骗问题:
过早收敛 减少超级个体的适应度
停滞现象 更改原始适应度的比例关系
copy选择复制
总体原则是个体的适应度越高越容易被选
每个个体有自己的概率标签
更新概率标签的方法:Monte Carlo、线性排序、非线性排序
选择方法:转盘赌选择、锦标赛法、最佳个体保存法 RTB
reproduction交叉
交叉算子 一点 二点交叉
修正的交叉方法:PMX算法
变异
位点变异、逆转变异、插入变异、互换变异、移动变异
ATCG随机变 reversed insert exchange leftrightmove
PRIEM(PRIME)
5、举几个人工生命的例子
计算机病毒 计算机进程 细胞自动机
群智能优化
概述:受到动物群体智能启发的算法
本章主要介绍粒子群和蚁群算法
粒子群算法
1、介绍一下粒子群算法
特点:速度快,简单 容易实现
思想:将个体看作n维搜索空间中粒子,有速度和位置信息,还有适应值
粒子通过个体最优解(个体极值)和种群最优解(全局极值)两个数据来更新自己
speed position fitness
应用范围:神经网络训练 生物信息 电力系统 等等
2、如何对粒子状态进行更新呢?
更新公式中具有三个部分:1、认知分量 2、社会分量 3、前一时刻的速度rand 增加多样性
没有1:局部最优
没有2:不合作根本达不到最优
没有3:无记忆性,只取决于best
3、粒子群算法步骤
初始化参数 计算适应度 获得历史最优位置、种群最优位置 根据定义的速度状态计算方程进行状态更新 满足终止条件停止,else返回计算适应度
生成粒子群的PSO算法参数
RVAVG 种群规模、惯性权重、加速度、最大速度V、最大代数G
蚁群算法
4、介绍一下蚁群算法
在解决离散组合优化方面有很好的性能
思想:通过跟踪信息素和信息素遗留来影响蚂蚁的行为
步骤:(1)环境建立 (2)觅食规则 (3)移动规则 (4)避障规则 (5)信息素规则
环境系统模型建立(随机比例系统)
1)信息素遗留的权重(信息素启发式因子)大时,蚂蚁倾向于选择其他蚂蚁经过的路径 接近贪婪规则
2)上面权重为0的时候,算法成为有多重起点的随机贪婪算法
3)局部启发信息指数为0时,算法成为正反馈的启发式算法
5、蚁群算法信息素浓度更新的三种模型
1)蚂蚁圈系统
使用全局信息进行更新,完成一次循环后每个蚂蚁更新
好处在于有遗忘机制,不会让信息素累计,较好路径的生存能力好,正反馈快,收敛快
如果第k只蚂蚁在本次循环中从x到y
第k只蚂蚁留在路径xy上的信息素加上Q/Lk,否则不增加
Q常数 Lk:表示第k只蚂蚁在本次循环中走过的路径长度
2)蚂蚁数量系统 每走一步就要进行更新
利用局部信息,每走一步就要更新残留信息素浓度
Q/dk
3)蚂蚁密度系统
利用局部信息,每走一步更新
Q
6、蚁群算法中三个参数解析
信息素启发因子a:随机性因素作用强度 a越大越有可能选择以前走过的路径 随机性减弱
期望值启发因子b:先验性,确定性因素作用强度b越大,越有可能进行局部最优
信息素挥发度1-p:太大时不喜欢选择新路径,喜欢走以前的老路;太小时收敛速度太低
机器学习
1、机器学习的一般步骤:
提取特征、学习函数、将数据映射到语义空间寻找与目标之间的关系
2、机器学习分类
监督学习:分类回归
无监督学习:聚类、降维
强化学习:与环境交互中学习
半监督学习
3、监督学习有什么元素
数据标签
学习模型
损失函数 0-1 平方 绝对 对数
4、鉴别几组术语
经验误差 期望误差 过拟合欠拟合 结构风险
5、监督学习方法
判别模型、生成模型
6、线性回归 最小二乘法处理数据
7、SVM 找超平面,分开尽可能多的两类数据点,使它们离开分类面最远 约束二次规划问题
线性可分 非线性可分(升维 核函数)
8、ada boosting 通过组合弱分类器形成强分类器
9、阐述回归问题和分类问题的区别
回归分析的值域是连续空间 分类任务的值域是离散空间
10、Kmeans 解决聚类问题的经典算法,简单快速
对于大数据集可伸缩高效率 复杂度O(nkt)
选择c个类的初始中心,k次迭代求其到c个中心的距离,将该样本归到距离最短的那个中心所在的类
利用均值等方法更新该类的中心值
对于所有c个聚类中心,若迭代后值不变,迭代结束
缺点:符号属性类不可用,初始值敏感,需要事先给出k,噪声敏感
11、主成分分析
特征降维方法,尽可能将数据向方差最大方向投影,彰显个性 最好的特征就是在每一维度上的样本方差都尽可能大
最优化的方差等于原始样本数据X的协方差矩阵的特征根之和
12、深度学习
传统的模式识别是通过手工设计良好的特征提取器,这需要大量的工程技术和专业知识
是否能够自动学习特征?深度学习(特征学习方法)
原始数据通过一些简单的但非线性的模型转变为高层次、抽象的表达
通用的学习过程,从数据中学习特征
13、深度学习的结构
简单模块的多层栈,大部分模块为了特征学习
通过卷积 池化 反向传播等手段进行特征学习 输出视觉对象
人工智能伦理
1、技术层面的考量
需要用于正确的目标、为了合理的目的开发、遵循伦理道德和引导
2、人文层面
如何定义人、如何定义整合、人类失去学习热情、对于社会结构的冲击、心理冲击、无用阶级、隐私保护
3、伦理规范 社会层面
AI导致失业 AI安全性 医疗机器人事故
4、公共政策层面
明确方向、加大投入、促进监督、隐私保护、加强教育