利用CAS操作(Compare & Set)实现无锁队列

本文详细介绍了无锁队列的核心技术,包括CAS、FAA原子操作及Retry-Loop机制,通过实例展示了如何实现无锁队列,同时讨论了ABA问题及其解决方案,最后介绍了使用数组实现无锁队列的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


关于CAS等原子操作

在开始说无锁队列之前,我们需要知道一个很重要的技术就是CAS操作——Compare & Set,或是 Compare & Swap,现在几乎所有的CPU指令都支持CAS的原子操作,X86下对应的是 CMPXCHG 汇编指令。有了这个原子操作,我们就可以用其来实现各种无锁(lock free)的数据结构。

这个操作用C语言来描述就是下面这个样子:(代码来自Wikipedia的Compare And Swap词条)意思就是说,看一看内存*reg里的值是不是oldval,如果是的话,则对其赋值newval。

intcompare_and_swap (int* reg, intoldval, intnewval)
{
  intold_reg_val = *reg;
  if(old_reg_val == oldval)
     *reg = newval;
  returnold_reg_val;
}

这个操作可以变种为返回bool值的形式(返回 bool值的好处在于,可以调用者知道有没有更新成功):

boolcompare_and_swap (int*accum, int*dest, intnewval)
{
  if( *accum == *dest ) {
      *dest = newval;
      returntrue;
  }
  returnfalse;
}

与CAS相似的还有下面的原子操作:(这些东西大家自己看Wikipedia吧)

注:在实际的C/C++程序中,CAS的各种实现版本如下:

1)GCC的CAS

GCC4.1+版本中支持CAS的原子操作(完整的原子操作可参看 GCC Atomic Builtins

bool__sync_bool_compare_and_swap (type *ptr, type oldval type newval, ...)
type __sync_val_compare_and_swap (type *ptr, type oldval type newval, ...)


2)Windows的CAS

在Windows下,你可以使用下面的Windows API来完成CAS:(完整的Windows原子操作可参看MSDN的InterLocked Functions

InterlockedCompareExchange ( __inoutLONGvolatile *Target,
                                __inLONGExchange,
                                __inLONGComperand);

3) C++11中的CAS

C++11中的STL中的atomic类的函数可以让你跨平台。(完整的C++11的原子操作可参看 Atomic Operation Library

template<classT >
boolatomic_compare_exchange_weak( std::atomic<T>* obj,
                                   T* expected, T desired );
template<classT >
boolatomic_compare_exchange_weak( volatilestd::atomic<T>* obj,
                                   T* expected, T desired );


无锁队列的链表实现

下面的东西主要来自John D. Valois 1994年10月在拉斯维加斯的并行和分布系统系统国际大会上的一篇论文——《Implementing Lock-Free Queues》。

我们先来看一下进队列用CAS实现的方式:

EnQueue(x)//进队列
{
    //准备新加入的结点数据
    q = newrecord();
    q->value = x;
    q->next = NULL;
 
    do{
        p = tail; //取链表尾指针的快照
    }while( CAS(p->next, NULL, q) != TRUE); //如果没有把结点链上,再试
 
    CAS(tail, p, q); //置尾结点
}

我们可以看到,程序中的那个 do- while 的 Re-Try-Loo。就是说,很有可能我在准备在队列尾加入结点时,别的线程已经加成功了,于是tail指针就变了,于是我的CAS返回了false,于是程序再试,直到试成功为止。这个很像我们的抢电话热的不停重播的情况。

你会看到,为什么我们的“置尾结点”的操作不判断是否成功,因为:

  1. 如果有一个线程T1,它的while中的CAS如果成功的话,那么其它所有的 随后线程的CAS都会失败,然后就会再循环,
  2. 此时,如果T1 线程还没有更新tail指针,其它的线程继续失败,因为tail->next不是NULL了。
  3. 直到T1线程更新完tail指针,于是其它的线程中的某个线程就可以得到新的tail指针,继续往下走了。

这里有一个潜在的问题——如果T1线程在用CAS更新tail指针的之前,线程停掉了,那么其它线程就进入死循环了。下面是改良版的EnQueue()

EnQueue(x)//进队列改良版
{
    q = newrecord();
    q->value = x;
    q->next = NULL;
 
    p = tail;
    oldp = p
    do{
        while(p->next != NULL)
            p = p->next;
    }while( CAS(p.next, NULL, q) != TRUE); //如果没有把结点链上,再试
 
    CAS(tail, oldp, q); //置尾结点
}


我们让每个线程,自己fetch 指针 p 到链表尾。但是这样的fetch会很影响性能。而通实际情况看下来,99.9%的情况不会有线程停转的情况,所以,更好的做法是,你可以接合上述的这两个版本,如果retry的次数超了一个值的话(比如说3次),那么,就自己fetch指针。

好了,我们解决了EnQueue,我们再来看看DeQueue的代码:(很简单,我就不解释了)

DeQueue()//出队列
{
    do{
        p = head;
        if(p->next == NULL){
            returnERR_EMPTY_QUEUE;
        }
    while( CAS(head, p, p->next) != TRUE );
    returnp->next->value;
}


我们可以看到,DeQueue的代码操作的是 head->next,而不是head本身。这样考虑是因为一个边界条件,我们需要一个dummy的头指针来解决链表中如果只有一个元素,head和tail都指向同一个结点的问题,这样EnQueue和DeQueue要互相排斥了

注:上图的tail正处于更新之前的装态。

CAS的ABA问题

所谓ABA(见维基百科的ABA词条),问题基本是这个样子:

  1. 进程P1在共享变量中读到值为A
  2. P1被抢占了,进程P2执行
  3. P2把共享变量里的值从A改成了B,再改回到A,此时被P1抢占。
  4. P1回来看到共享变量里的值没有被改变,于是继续执行。

虽然P1以为变量值没有改变,继续执行了,但是这个会引发一些潜在的问题。ABA问题最容易发生在lock free 的算法中的,CAS首当其冲,因为CAS判断的是指针的地址。如果这个地址被重用了呢,问题就很大了。

比如上述的DeQueue()函数,因为我们要让head和tail分开,所以我们引入了一个dummy指针给head,当我们做CAS的之前,如果head的那块内存被回收并被重用了,而重用的内存又被EnQueue()进来了,这会有很大的问题。(内存管理中重用内存基本上是一种很常见的行为

这个例子你可能没有看懂,维基百科上给了一个活生生的例子——

你拿着一个装满钱的手提箱在飞机场,此时过来了一个火辣性感的美女,然后她很暖昧地挑逗着你,并趁你不注意的时候,把用一个一模一样的手提箱和你那装满钱的箱子调了个包,然后就离开了,你看到你的手提箱还在那,于是就提着手提箱去赶飞机去了。

这就是ABA的问题。

解决ABA的问题

维基百科上给了一个解——使用double-CAS(双保险的CAS),例如,在32位系统上,我们要检查64位的内容

1)一次用CAS检查双倍长度的值,前半部是指针,后半部分是一个计数器。

2)只有这两个都一样,才算通过检查,要吧赋新的值。并把计数器累加1。

这样一来,ABA发生时,虽然值一样,但是计数器就不一样(但是在32位的系统上,这个计数器会溢出回来又从1开始的,这还是会有ABA的问题)

当然,我们这个队列的问题就是不想让那个内存重用,这样明确的业务问题比较好解决,论文《Implementing Lock-Free Queues》给出一这么一个方法——使用结点内存引用计数refcnt

SafeRead(q)
{
    loop:
        p = q->next;
        if(p == NULL){
            returnp;
        }
 
        Fetch&Add(p->refcnt, 1);
 
        if(p == q->next){
            returnp;
        }else{
            Release(p);
        }
    gotoloop;
}


其中的 Fetch&Add和Release分是是加引用计数和减引用计数,都是原子操作,这样就可以阻止内存被回收了。

用数组实现无锁队列

本实现来自论文《Implementing Lock-Free Queues

使用数组来实现队列是很常见的方法,因为没有内存的分部和释放,一切都会变得简单,实现的思路如下:

1)数组队列应该是一个ring buffer形式的数组(环形数组)

2)数组的元素应该有三个可能的值:HEAD,TAIL,EMPTY(当然,还有实际的数据)

3)数组一开始全部初始化成EMPTY,有两个相邻的元素要初始化成HEAD和TAIL,这代表空队列。

4)EnQueue操作。假设数据x要入队列,定位TAIL的位置,使用double-CAS方法把(TAIL, EMPTY) 更新成 (x, TAIL)。需要注意,如果找不到(TAIL, EMPTY),则说明队列满了。

5)DeQueue操作。定位HEAD的位置,把(HEAD, x)更新成(EMPTY, HEAD),并把x返回。同样需要注意,如果x是TAIL,则说明队列为空。

算法的一个关键是——如何定位HEAD或TAIL?

1)我们可以声明两个计数器,一个用来计数EnQueue的次数,一个用来计数DeQueue的次数。

2)这两个计算器使用使用Fetch&ADD来进行原子累加,在EnQueue或DeQueue完成的时候累加就好了。

3)累加后求个模什么的就可以知道TAIL和HEAD的位置了。

如下图所示:

 小结

以上基本上就是所有的无锁队列的技术细节,这些技术都可以用在其它的无锁数据结构上。

1)无锁队列主要是通过CAS、FAA这些原子操作,和Retry-Loop实现。

2)对于Retry-Loop,我个人感觉其实和锁什么什么两样。只是这种“锁”的粒度变小了,主要是“锁”HEAD和TAIL这两个关键资源。而不是整个数据结构。

还有一些和Lock Free的文章你可以去看看:

&lt;think&gt;嗯,我现在需要了解TLS(线程局部存储)在C++中的使用方法,以及如何用TLS实现无锁队列。首先,我得先理解什么是线程局部存储。根据之前学的多线程知识,线程之间共享进程的资源,但有时候每个线程需要有自己的数据副本,避免竞争条件。TLS可能就是用来实现这个的。比如,每个线程可能需要独立的计数器或者临时缓冲区。 那在C++中,TLS是怎么使用的呢?我记得C++11引入了thread_local关键字,可能和这个有关。比如用thread_local声明变量,每个线程都会有自己独立的实例。另外,Windows和Linux可能有自己的API,比如Windows的TlsAlloc、TlsGetValue这些函数,不过现在可能更推荐使用语言层面的thread_local。 接下来,用户还提到用TLS实现无锁队列无锁队列通常通过原子操作实现,避免互斥锁的开销。但如何结合TLS呢?也许每个线程通过TLS维护自己的数据,比如本地队列,然后通过某种方式合并到全局队列中。这样线程在操作自己的本地队列时不需要锁,只在需要与全局队列交互时处理同步问题。比如,写入时线程先放入自己的TLS队列,批量转移时用原子操作更新全局队列。这样可以减少竞争,但需要考虑数据一致性和内存屏障的问题。 不过,可能存在一些误区。比如,TLS本身并不是用来解决线程间通信的,而是线程内的数据隔离。无锁队列的重点是原子操作和内存顺序,而结合TLS可能是为了减少同步的频率,比如每个线程处理自己的部分,最后合并。需要确认这种设计是否可行,以及潜在的问题,比如延迟、数据丢失等。 需要进一步查阅资料,确认TLS的正确用法,以及在无锁结构中应用的案例。比如,是否可以将每个线程的本地缓存通过TLS管理,然后定期无锁地合并到全局队列,这样减少全局队列的竞争。具体实现可能需要双缓冲技术或者CAS(比较并交换)操作来确保线程安全。 总结思路:首先介绍TLS的概念和在C++中的使用方法,包括thread_local关键字和平台相关API。然后讨论如何利用TLS为每个线程维护本地队列,减少对全局队列的竞争,通过原子操作将本地队列的数据合并到全局队列,从而实现无锁的高效队列结构。需要注意内存可见性和原子操作的顺序,确保数据正确同步。&lt;/think&gt;### TLS线程局部存储介绍 #### 1. 基本概念 线程局部存储(Thread Local Storage, TLS)是一种允许每个线程**独立存储和访问数据副本**的机制。在多线程环境中,普通全局变量是共享的,而TLS变量会为每个线程创建独立的实例,避免多线程竞争。 #### 2. C++中的TLS实现 - **C++11标准**:通过`thread_local`关键字声明变量 ```cpp thread_local int perThreadData; // 每个线程独立实例 ``` - **Windows API**(兼容旧代码): ```cpp DWORD tlsIndex = TlsAlloc(); // 创建TLS槽 TlsSetValue(tlsIndex, dataPtr); // 存储数据 void* data = TlsGetValue(tlsIndex); // 读取数据 ``` - **Linux/POSIX**: ```cpp pthread_key_t key; pthread_key_create(&amp;key, destructor); // 创建TLS键 pthread_setspecific(key, dataPtr); // 存储数据 void* data = pthread_getspecific(key); // 读取数据 ``` --- ### 用TLS实现无锁队列的核心思路 #### 1. 设计目标 - **减少全局竞争**:通过TLS为每个线程维护**本地队列**,避免直接操作全局队列 - **批量提交**:将多次操作合并后,通过原子操作更新到全局队列 #### 2. 实现步骤 ```cpp // 全局无锁队列(示例使用原子标记指针) std::atomic&lt;Node*&gt; globalHead{nullptr}; // 每个线程的TLS本地队列 thread_local std::vector&lt;Data&gt; localQueue; void enqueue(const Data&amp; data) { localQueue.push_back(data); // 批量提交到全局队列(阈值示例:100条) if (localQueue.size() &gt;= 100) { // 1. 创建新节点 Node* newNode = createBulkNode(localQueue); // 2. 原子操作更新全局队列 Node* oldHead = globalHead.load(std::memory_order_relaxed); do { newNode-&gt;next = oldHead; } while (!globalHead.compare_exchange_weak( oldHead, newNode, std::memory_order_release, std::memory_order_relaxed)); // 3. 清空本地队列 localQueue.clear(); } } ``` #### 3. 关键技术点 - **内存顺序选择**:`std::memory_order_release`确保本地数据对其他线程可见 - **CAS原子操作**:`compare_exchange_weak`实现无锁的头部更新 - **批量合并策略**:通过阈值控制同步频率(空间换时间) --- ### 注意事项 1. **数据可见性**:最后一次提交需确保内存同步 2. **延迟处理**:未达阈值的残留数据需特殊处理(如析构时强制提交) 3. **负载均衡**:消费线程需处理全局队列合并后的数据 4. **ABA问题**:需通过标记指针或风险指针(Hazard Pointer)避免 --- ### 典型应用场景 - 高频日志系统(每个线程缓存日志,批量写入) - 事件处理器(线程本地收集事件,定时刷新) - 对象池分配器(本地缓存对象,减少全局锁竞争) ### 性能对比 | 方案 | 锁竞争频率 | 吞吐量 | 延迟一致性 | |-----------------|------------|---------|------------| | 传统互斥锁队列 | 每次操作 | 低 | 高 | | 纯无锁队列 | 每次操作 | 中 | 中 | | TLS+无锁队列 | 按批次 | 高 | 低 | (注:实际性能需结合具体场景测试)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值