耐心思考

今天独自解决了两个比较棘手的问题

1,BAPI_MATERIAL_SAVEDATA无法更改移动平均价的问题,通过参考MR21的

源代码改为用 PRICES_CHANGE , PRICES_POST, BAPI_TRANSACTION_COMMIT 问题解决

2,信息记录条件价格的更改无法使用别人推荐的 ME_MAINTAIN_INFORECORD解决,后通过 ME_UPDATE_INFORECORD in update task, ME_INFOREC_SEND badi增强,解决信息记录净价和

有效价格的问题,通过 BAPI_PRICES_CONDITIONS 解决条件价格的问题。

从以前两个问题的解决思路中启发如下:

1,要有勇于解决困难问题的耐心

2,在技术方案确认下,要深入的思考,并借鉴标准事务的原代码。其间多思考,多实践。

well done!

### OpenWebUI与VLLM的集成方式 #### 背景介绍 OpenWebUI 是一种用于本地大语言模型 (LLM) 的图形化交互界面,能够通过简单的操作实现对多种 LLM 的管理和调用。而 VLLM(Vectorized Large Language Model)是一种高效的推理框架,专为大规模并行计算设计,特别适合运行在高性能 GPU 上[^1]。 为了将 VLLM 集成到 OpenWebUI 中,可以遵循以下方法: --- #### 方法概述 ##### 依赖环境准备 确保已安装必要的软件和工具链: - **Docker**:推荐使用 Docker 运行 OpenWebUI 和其他相关组件。 - **NVIDIA CUDA Toolkit**:如果计划利用 NVIDIA GPU 加速,则需设置好 CUDA 环境[^4]。 - **Python 环境**:通常需要 Python >=3.8 版本来支持 VLLM 及其依赖项。 ##### 安装 VLLM 可以通过 pip 或源码编译的方式安装 VLLM 库。以下是基于 pip 的简单安装命令: ```bash pip install vllm ``` 对于更高性能需求的情况,建议从 GitHub 获取最新版本并自行构建: ```bash git clone https://github.com/vllm-project/vllm.git cd vllm pip install . ``` 此过程可能涉及额外的依赖解决以及针对特定硬件架构的优化配置[^2]。 ##### 开启 VLLM 推理服务端口 启动 VLLM RESTful API Server,以便后续由 OpenWebUI 访问该接口完成请求转发功能。下面是一个典型的启动脚本实例: ```python from vllm import LLM, SamplingParams # 初始化大型语言模型实例 model_path = "/path/to/your/model" llm = LLM(model=model_path) # 设定采样参数 sampling_params = SamplingParams(temperature=0.7, top_p=0.95) def generate_text(prompt): outputs = llm.generate([prompt], sampling_params=sampling_params) result = outputs[0].outputs[0].text return result ``` 上述代码片段展示了如何加载预训练好的权重文件,并定义了一个基础的文字生成函数 `generate_text()`[^3]。 随后可通过 Flask/Django 构建 HTTP 微服务暴露给外部程序调用;或者直接采用内置的支持标准协议如 gRPC / JSON-RPC 的解决方案简化开发流程。 --- #### 将 VLLM 整合至 OpenWebUI 一旦确认 VLLM 已经正常工作且对外提供稳定的网络通信能力之后,就可以着手将其接入到 OpenWebUI 当中去了。具体步骤如下所述: 1. 修改 OpenWebUI 的后端逻辑部分使之能识别来自不同供应商所提供的定制化插件模块; 2. 创建一个新的适配层负责处理两者之间的数据交换格式转换任务——即将用户的输入转化为符合目标平台预期的形式再提交过去等待回应结果返回后再做进一步解析展示出来供最终使用者查看理解; 3. 测试整个系统的连贯性和稳定性直至满足实际应用场景下的各项指标为止。 值得注意的是,在执行这些改动之前最好先备份原始项目文件以防万一出现问题时可以迅速恢复原状继续尝试别的办法解决问题而不是陷入无休止地调试循环当中去浪费宝贵的时间资源等等情况发生哦! --- ### 注意事项 - 如果打算让多个客户端共享同一个服务器上的算力池子的话记得考虑加入身份验证机制防止未经授权的人随意占用公共资源造成不必要的损失风险等问题出现哟! - 对于初学者而言或许会觉得这个过程有些复杂难懂没关系只要按照官方文档指南一步步耐心学习实践相信很快就能掌握其中精髓啦😊 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值