自动检测修辞语言:迈向更智能的情感分析
1. 引言
讽刺作为一种复杂的语言现象,不仅在哲学和语言学中备受关注,也在自然语言处理(NLP)领域成为研究热点。讽刺的核心在于其所述内容与实际事实之间的不一致,即字面意义与其意图意义之间的差异。当听众意识到某一表述在字面上不合逻辑时,便会开始寻找其非字面意义。这种现象在许多研究中被归类为一种修辞手法,与幽默、讽刺、戏仿和挖苦等其他形式的修辞语言密切相关。这些修辞语言之间的区别较为复杂,尤其在语言层面和计算层面的区分上更具挑战性。
2. 语料库
2.1 主要语料库
在修辞语言的研究中,语料库的选择和构建至关重要。大多数现有研究依赖于特定标签(如#sarcasm, #irony)来收集讽刺和挖苦的数据集。这种方法使得数据集的收集相对容易,但也存在一定的局限性。例如,Gonzalez-Ibanez等人(2011)构建了一个由900条推文组成的语料库,分为讽刺、正面情绪和负面情绪三类。Reyes等人(2013)则构建了一个包含40,000条推文的语料库,分为讽刺、教育、幽默和政治四类。Liebrecht等人(2013)创建了一个包含讽刺推文的荷兰语语料库,其中一部分推文带有#sarcasme标签。
2.2 标注方案
为了更细致地分析讽刺表达,研究人员提出了多种标注方案。例如,Senti-TUT(Gianti等人,2012)旨在分析讽刺对情感和情绪表达的影响,将推文分为五类:正面、负面、讽刺、混合和客观。Van Hee等人(2015)研究了英语和荷兰语推文中不同类型的讽刺,包括冲突引起的讽刺、夸张引起的讽刺、委婉语引起的讽刺、潜在的讽刺和非讽刺。