t8u9v0
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
22、交通事件检测视频分析的性能评估
本文系统评估了视频分析(VA)系统在交通事件检测和数据收集方面的性能,重点分析了视频质量、天气条件、光照环境、相机高度与位置等因素对事件检测准确性和交通计数误差的影响。通过设置不同质量的视频进行实验,并采用检测率(DR)和误报率(FAR)评估事件检测性能,使用平均绝对误差(MAE)和平均绝对百分比误差(MAPE)衡量交通计数数据的准确性。研究发现,视频质量是影响系统性能的关键因素,高质量视频能显著提升检测率并降低误报率,同时改善交通计数的误差。此外,恶劣天气和特殊光照条件会显著影响系统表现,而相机高度和位置原创 2025-09-08 10:12:18 · 23 阅读 · 0 评论 -
21、交通事件检测与车辆计数的视频分析性能评估
本博文探讨了视频分析(VA)系统在交通事件检测和车辆计数方面的性能评估。研究分析了视频质量、天气和照明条件以及摄像头参数对系统性能的影响,并提出了优化建议以提高系统的准确性和可靠性。通过试点测试,验证了VA系统在不同环境条件下的有效性,为交通管理和运营提供了重要支持。原创 2025-09-07 13:39:13 · 26 阅读 · 0 评论 -
20、基于服装生物特征的人员识别与检索研究
本文探讨了基于软服装生物特征在人员识别和检索中的应用,通过多个实验验证了软服装特征的判别能力及其与其他生物特征融合的效果。研究发现,Cat-21 和 Cmp 方法在识别实验中表现突出,而 tradCmp 和 softCmp 在检索实验中性能优异,同时特征子集的选择对整体性能提升具有关键作用。软服装生物特征因其可视性和语义桥梁作用,在监控视频分析、犯罪现场搜索等领域展现出重要潜力。原创 2025-09-06 12:49:20 · 16 阅读 · 0 评论 -
19、基于服装分析的主体识别与检索
本文探讨了服装信息在主体识别与检索中的重要作用,重点分析了软服装特征的分类和比较属性。通过方差分析(ANOVA)、统计依赖性(SD)和互信息(MI)等多种方法,对服装特征进行了全面评估和排序,揭示了不同特征在识别中的重要性和相关性。同时,还介绍了特征子集选择方法SFS和SFFS的应用,以及如何通过这些方法实现最优识别性能。研究为提升主体识别的准确性和效率提供了理论支持和技术指导。原创 2025-09-05 10:07:25 · 15 阅读 · 0 评论 -
18、基于服装分析的主体识别与检索研究
本文探讨了服装分析在主体识别与检索中的应用价值,重点研究了服装作为软生物特征在监控图像分析中的作用。通过详细的数据收集、预处理和特征分析方法,文章展示了服装属性如何辅助人员识别和检索,特别是在低质量监控图像中无法获取面部信息时的应用潜力。同时,文章分析了服装特征分布的特点,提出了流程优化方法,并讨论了实际应用中的挑战及解决方案,为未来服装分析技术的发展提供了理论支持和实践指导。原创 2025-09-04 11:43:51 · 16 阅读 · 0 评论 -
17、基于服装分析的目标识别与检索
本文探讨了基于服装分析的目标识别与检索技术,重点介绍了服装属性作为软生物特征在身份识别中的独特优势。文中分析了服装分析的动机与应用,详细阐述了软生物特征的概念及其在人类识别与检索中的作用,并深入讨论了服装信息分析的流程、应用场景以及未来发展趋势。服装分析在安全监控、时尚行业和社交网络等领域展现出广泛的应用前景,尽管在图像质量、视角变化、遮挡问题等方面仍面临挑战,但随着深度学习、多模态融合和实时分析技术的发展,其潜力将进一步被挖掘。原创 2025-09-03 11:50:37 · 16 阅读 · 0 评论 -
16、多颜色空间中的SIFT特征用于改进图像分类
本文探讨了多颜色空间中的SIFT特征在图像分类任务中的应用,通过在Caltech 256和UPOL虹膜数据集上的实验评估了多种描述符和分类器的性能。实验结果表明,CGSF+PHOG描述符结合EFM-NN分类器在分类准确率上表现最佳。研究还分析了不同特征数量对分类性能的影响,并为实际应用中的描述符和分类器选择提供了建议。原创 2025-09-02 13:58:14 · 17 阅读 · 0 评论 -
15、多颜色空间下的 SIFT 特征用于改进图像分类
本文研究了多颜色空间下的SIFT特征在图像分类中的应用。通过在不同颜色空间(如RGB、HSV、YCbCr、oRGB等)中提取SIFT特征,并结合特征融合策略(如CSF、CGSF)和EFM-NN分类器,显著提升了图像分类的准确性和鲁棒性。实验表明,融合多颜色空间信息的新描述符在Caltech 256和UPOL Iris等大规模数据集上表现优异,具有广泛的应用前景。原创 2025-09-01 14:11:23 · 12 阅读 · 0 评论 -
14、高效支持向量机(eSVM)及其在图像分类与眼部定位中的应用
本文介绍了一种高效的改进型支持向量机(eSVM),其在图像分类和眼部定位任务中表现出色。eSVM通过显著减少支持向量数量,提高了计算效率,同时保持甚至提升了分类准确性。在眼部定位实验中,eSVM比传统SVM快20倍,并在大规模数据库上实现了高检测率。此外,文章探讨了多颜色空间SIFT特征的融合方法,用于提升图像分类性能,结合EFM-NN分类器取得了良好的效果。研究结果表明,这些方法在图像搜索和视频检索领域具有广泛的应用潜力。原创 2025-08-31 14:41:45 · 17 阅读 · 0 评论 -
13、高效支持向量机(eSVM)及其在眼睛定位中的应用
本文介绍了一种改进的高效支持向量机(eSVM)及其在眼睛定位中的应用。通过改进的SMO算法,eSVM在计算效率上有显著提升,同时保持了与传统SVM相当甚至更好的分类性能。在眼睛定位任务中,结合颜色信息和二维Haar小波特征提取,提出了一种准确且高效的眼睛定位方法。实验结果表明,eSVM能够显著减少支持向量数量,提升分类速度,并在多个数据集上保持优异性能。该方法在安防监控、人机交互和医疗诊断等领域具有广泛的应用前景。原创 2025-08-30 09:13:28 · 15 阅读 · 0 评论 -
12、高效支持向量机(eSVM)及其在图像眼部搜索中的应用
本文提出了一种高效支持向量机(eSVM),通过定义Θ集并引入单个松弛变量,显著减少了支持向量的数量,从而提高计算效率,同时保持与传统SVM相当的泛化性能。此外,文章介绍了一种基于eSVM的准确高效的眼部定位方法,结合YCbCr颜色空间分析、2D Haar小波多尺度表示、PCA降维和eSVM分类,实现了快速且准确的眼部检测。实验结果表明,eSVM在分类性能不受影响的前提下显著提升了计算效率,而基于eSVM的眼部定位方法在FRGC和FERET数据库上表现优异,具有广泛的应用前景,如人脸识别、人机交互和视频监控等原创 2025-08-29 16:26:38 · 15 阅读 · 0 评论 -
11、图像分类中的新型稀疏核流形学习器应用
本文介绍了新型稀疏核流形学习器(SKML)在图像分类中的应用,详细分析了其在多个数据集上的实验结果,包括Painting-91、Fifteen Scene Categories和CalTech 101。SKML通过混合特征提取、FFV特征推导、FCFV特征生成等步骤,实现了高效的分类性能。实验表明,SKML在艺术家分类、风格分类和场景分类等任务中均优于传统方法和深度学习方法,展现了其强大的分类能力和应用潜力。原创 2025-08-28 14:22:49 · 13 阅读 · 0 评论 -
10、用于图像分类应用的新型稀疏核流形学习器
本文提出了一种新型的稀疏核流形学习器(SKML)方法,用于图像分类任务。通过引入DAISY Fisher向量(D-FV)、Weber-SIFT Fisher向量(WS-FV)以及融合颜色Fisher向量(FCFV)等创新特征,有效编码图像的颜色、局部结构、相对强度和梯度方向信息。结合稀疏表示和流形学习的思想,SKML方法在多个图像分类数据集上表现出优越的性能。实验结果表明,该方法优于传统图像描述符和深度学习方法,具有良好的鲁棒性和准确性,为图像分类提供了一种新的有效解决方案。原创 2025-08-27 14:51:01 · 14 阅读 · 0 评论 -
9、可继承颜色空间(InCS)与广义 InCS 框架在亲属关系验证中的应用
本文提出了一种基于可继承颜色空间(InCS)和广义InCS(GInCS)框架的亲属关系验证方法。通过定义新的颜色相似度度量(CSM),结合欧几里得距离和支持向量机,实现对亲属关系的准确判定。实验表明,该方法在多个数据集上均优于现有方法,尤其是在KinFaceW-I和KinFaceW-II数据集上表现出显著的性能提升。同时,InCS和GInCS框架在光照变化条件下具有良好的鲁棒性,展示了其在实际应用中的潜力。原创 2025-08-26 12:16:56 · 14 阅读 · 0 评论 -
8、可继承颜色空间(InCS)与广义 InCS 框架
本文提出了一种新颖的可继承颜色空间(InCS)及其广义框架(GInCS),用于亲属关系验证。通过设计一种新的颜色相似度度量(CSM)和优化变换矩阵W,InCS能够有效捕捉图像之间的颜色变化,同时具备去相关特性和对光照变化的鲁棒性。在此基础上,广义InCS框架将方法从像素级别扩展到特征级别(如Fisher向量),进一步提升了性能和适应性。实验在四个代表性亲属关系数据集上验证了该方法的有效性,并展示了其在法医学、社交网络和家庭团聚等领域的应用潜力。原创 2025-08-25 09:43:58 · 18 阅读 · 0 评论 -
7、图像分类与亲属关系验证的前沿技术探索
本文探讨了计算机视觉领域中两个重要研究方向:图像分类和亲属关系验证。在图像分类方面,引入了改进的软分配编码(ISAC)方法,结合幂变换和L2归一化技术,在多个数据集上验证了其优越性能。在亲属关系验证方面,提出了一种新颖的可继承颜色空间(InCS)和广义InCS框架,通过颜色相似性度量和去相关特性,提升了验证的准确性和鲁棒性。这些方法为相关研究提供了新的思路和技术手段,并展望了与深度学习结合的未来方向。原创 2025-08-24 12:55:06 · 31 阅读 · 0 评论 -
6、图像分类的改进软分配编码方法
本文提出了一种改进的软分配编码方法(ISAC),通过引入阈值归一化视觉词合理性(TNVWP)和幂变换,有效解决了传统软分配编码方法在图像分类中的量化误差、稀疏性问题和全局带宽限制。ISAC方法在多个代表性图像数据集上表现出色,分类性能优于或与其他主流方法相当,如稀疏编码和局部约束线性编码。该方法在体育赛事图像分类、场景识别和目标识别等任务中具有广泛的应用前景。原创 2025-08-23 16:24:28 · 13 阅读 · 0 评论 -
5、图像搜索与视频检索的学习和识别方法
本文详细介绍了高效支持向量机(eSVM)及其在图像搜索和视频检索中的多种应用方法。重点探讨了SVMActive、DFB、基于相关反馈的SVM图像搜索、偏好权重更新、多训练SVM以及视频检索中的应用。同时分析了核方法与相似度度量的理论基础与实际应用,结合不同场景提出了优化策略。最后总结了现有方法的优势,并展望了未来发展方向,包括核函数创新、相似度度量优化、多方法融合以及实时处理能力的提升。原创 2025-08-22 16:03:23 · 15 阅读 · 0 评论 -
4、图像搜索和视频检索的学习与识别方法
本文详细介绍了图像搜索和视频检索任务中常用的学习与识别方法,包括深度学习网络和模型以及支持向量机(SVM)。深度学习方法如前馈神经网络、卷积神经网络(CNN)、深度自编码器和深度玻尔兹曼机在图像分类、特征学习和生成任务中表现出色,而支持向量机基于结构风险最小化原则,在小样本和高维数据上具有良好的泛化能力。文章还比较了不同方法的优缺点,并结合应用场景提供了实际操作建议,包括数据准备、模型选择、训练优化和评估流程。原创 2025-08-21 16:41:34 · 11 阅读 · 0 评论 -
3、图像搜索与视频检索的特征表示、提取及学习识别方法
本文详细介绍了图像搜索与视频检索中的特征表示、提取方法以及学习和识别方法。涵盖了Laplacian SIFT、Edge-SIFT、CSIFT、RootSIFT和PCA-SIFT等多种特征提取技术,以及深度学习模型和支持向量机(SVM)等学习与识别方法。通过对比分析和应用案例,帮助读者更好地理解不同方法的特点和适用场景,为实际应用提供指导。原创 2025-08-20 15:18:29 · 17 阅读 · 0 评论 -
2、图像搜索与视频检索的特征表示与提取方法
本文介绍了图像搜索和视频检索领域中的多种特征表示与提取方法。包括Fisher向量编码、稀疏编码及其变体、局部二值模式(LBP)及其相关方法、尺度不变特征变换(SIFT)及其变体。分析了各种方法的原理、优缺点以及应用场景,帮助读者根据实际需求选择合适的技术方案。原创 2025-08-19 10:39:24 · 11 阅读 · 0 评论 -
1、智能图像搜索与视频检索中的特征表示与提取方法
本文综述了智能图像搜索和视频检索中的关键特征表示与提取方法。涵盖了空间金字塔匹配(SPM)、软分配编码、Fisher向量编码、稀疏编码及其变体,以及局部二值模式(LBP)、局部四值模式(LQP)和尺度不变特征变换(SIFT)等经典方法,并详细介绍了它们的原理、特点及应用场景。这些方法在图像纹理分析、特征提取和编码表示方面具有重要作用,为提升图像搜索和视频检索的性能提供了理论基础和技术支持。原创 2025-08-18 16:55:28 · 15 阅读 · 0 评论