KNN算法及其优化:从理论到实践的全面解析
1. KNN算法简介
K-Nearest Neighbors (KNN) 是一种简单而强大的机器学习算法,广泛应用于分类和回归任务。它通过计算待分类样本与其最近邻居的距离来决定其类别或数值。KNN算法的核心思想是“近朱者赤,近墨者黑”,即一个样本的属性很大程度上取决于其周围的邻居。
1.1 KNN算法的基本原理
KNN算法的主要步骤如下:
- 选择K值 :确定邻居的数量K。K值的选择至关重要,过小可能导致过拟合,过大则可能降低模型的灵敏度。
- 计算距离 :使用某种距离度量方法(如欧几里得距离、曼哈顿距离等)计算待分类样本与训练集中每个样本的距离。
- 选择最近邻居 :选取距离最近的K个样本作为邻居。
- 投票决定类别 :在分类任务中,根据K个邻居的多数票决定待分类样本的类别;在回归任务中,取K个邻居的目标变量的平均值作为预测值。
1.2 距离度量方法
距离度量是KNN算法中的关键环节。常见的距离度量方法包括:
- 欧几里得距离 :适用于二维或多维空间中的连续数值型数据。
- 曼哈顿距离 :适用于城市街区网格布局中的距离计算。
- 闵可夫斯基距离 :欧几里得