数据科学中的Python实用编程与机器学习
1. 半监督聚类与糖尿病预防案例
1.1 半监督聚类
聚类旨在识别数据点之间的异同,通常不需要数据内部关系的先验信息。但在某些情况下,部分聚类标签、结果变量或数据内部关系信息是已知的,这时半监督聚类就非常有用。它利用已知的聚类信息对其他未标记的数据进行分类。
半监督学习的一个著名应用是处理文本数据,如脚本、书籍、博客等,这些文本大多是未标记的。半监督学习的强大之处在于,它能让算法从少量标记的文本文档中学习,同时对训练数据中大量未标记的文本文档进行分类。
1.2 糖尿病预防案例研究
如果能通过机器学习和深度学习算法对糖尿病相关数据进行分析,预测糖尿病的发病情况,这将对即将被归类为糖尿病患者的人有很大帮助。
1.2.1 特征选择
为了准确预测糖尿病,选择了以下属性:
| 属性 | 含义 |
| ---- | ---- |
| npreg | 怀孕次数 |
| glucose | 血浆葡萄糖浓度 |
| bp | 血压 |
| skin | 三头肌皮褶厚度 |
| BMI | 身体质量指数 |
| ped | 糖尿病遗传函数 |
| age | 年龄 |
| income | 收入 |
1.2.2 数据清洗
收集到的数据需要进行清洗,以确保数据可用于分析。数据清洗非常重要,因为数据可能存在各种不一致性,如不完整数据、空列、异常值、不兼容的数据格式等。清洗后的数据将被加载到分析沙箱中,并应用各种统计函数进行处理。