最小二乘法及其C++实现

        监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。对于二维空间线性是一条直线;对于三维空间线性是一个平面,对于多维空间线性是一个超平面…这里,谈一谈最简单的一元线性回归模型。

1.一元线性回归模型

模型如下:



总体回归函数中Y与X的关系可是线性的,也可是非线性的。对线性回归模型的“线性”有两种解释:

      (1)就变量而言是线性的,Y的条件均值是 X的线性函数

     (2)就参数而言是线性的,Y的条件均值是参数的线性函数

线性回归模型主要指就参数而言是“线性”,因为只要对参数而言是线性的,都可以用类似的方法估计其参数。

2.参数估计——最小二乘法

        对于一元线性回归模型, 假设从总体中获取了n组观察值(X1,Y1),(X2,Y2), …,(Xn,Yn)。对于平面中的这n个点,可以使用无数条曲线来拟合。要求样本回归函数尽可能好地拟合这组值。综合起来看,这条直线处于样本数据的中心位置最合理。 选择最佳拟合曲线的标准可以确定为:使总的拟合误差(即总残差)达到最小。有以下三个标准可以选择:

        (1)用“残差和最小”确定直线位置是一个途径。但很快发现计算“残差和”存在相互抵消的问题。
        (2)用“残差绝对值和最小”确定直线位置也是一个途径。但绝对值的计算比较麻烦。
        (3)最小二乘法的原则是以“残差平方和最小”确定直线位置。用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。这种方法对异常值非常敏感。

        最常用的是普通最小二乘法( Ordinary  Least Square,OLS):所选择的回归模型应该使所有观察值的残差平方和达到最小。(Q为残差平方和)

样本回归模型:


残差平方和:


则通过Q最小确定这条直线,即确定,以为变量,把它们看作是Q的函数,就变成了一个求极值的问题,可以通过求导数得到。求Q对两个待估参数的偏导数:


解得:


3.最小二乘法c++实现

  1. #include<iostream>  
  2. #include<fstream>  
  3. #include<vector>  
  4. using namespace std;  
  5.   
  6. class LeastSquare{  
  7.     double a, b;  
  8. public:  
  9.     LeastSquare(const vector<double>& x, const vector<double>& y)  
  10.     {  
  11.         double t1=0, t2=0, t3=0, t4=0;  
  12.         for(int i=0; i<x.size(); ++i)  
  13.         {  
  14.             t1 += x[i]*x[i];  
  15.             t2 += x[i];  
  16.             t3 += x[i]*y[i];  
  17.             t4 += y[i];  
  18.         }  
  19.         a = (t3*x.size() - t2*t4) / (t1*x.size() - t2*t2);  
  20.         //b = (t4 - a*t2) / x.size();  
  21.         b = (t1*t4 - t2*t3) / (t1*x.size() - t2*t2);  
  22.     }  
  23.   
  24.     double getY(const double x) const  
  25.     {  
  26.         return a*x + b;  
  27.     }  
  28.   
  29.     void print() const  
  30.     {  
  31.         cout<<”y = ”<<a<<“x + ”<<b<<“\n”;  
  32.     }  
  33.   
  34. };  
  35.   
  36. int main(int argc, char *argv[])  
  37. {  
  38.     if(argc != 2)  
  39.     {  
  40.         cout<<”Usage: DataFile.txt”<<endl;  
  41.         return -1;  
  42.     }  
  43.     else  
  44.     {  
  45.         vector<double> x;  
  46.         ifstream in(argv[1]);  
  47.         for(double d; in>>d; )  
  48.             x.push_back(d);  
  49.         int sz = x.size();  
  50.         vector<double> y(x.begin()+sz/2, x.end());  
  51.         x.resize(sz/2);  
  52.         LeastSquare ls(x, y);  
  53.         ls.print();  
  54.           
  55.         cout<<”Input x:\n”;  
  56.         double x0;  
  57.         while(cin>>x0)  
  58.         {  
  59.             cout<<”y = ”<<ls.getY(x0)<<endl;  
  60.             cout<<”Input x:\n”;  
  61.         }  
  62.     }  
  63. }  
#include<iostream>




#include<fstream> #include<vector> using namespace std; class LeastSquare{ double a, b; public: LeastSquare(const vector<double>& x, const vector<double>& y) { double t1=0, t2=0, t3=0, t4=0; for(int i=0; i<x.size(); ++i) { t1 += x[i]*x[i]; t2 += x[i]; t3 += x[i]*y[i]; t4 += y[i]; } a = (t3*x.size() - t2*t4) / (t1*x.size() - t2*t2); //b = (t4 - a*t2) / x.size(); b = (t1*t4 - t2*t3) / (t1*x.size() - t2*t2); } double getY(const double x) const { return a*x + b; } void print() const { cout<<"y = "<<a<<"x + "<<b<<"\n"; } }; int main(int argc, char *argv[]) { if(argc != 2) { cout<<"Usage: DataFile.txt"<<endl; return -1; } else { vector<double> x; ifstream in(argv[1]); for(double d; in>>d; ) x.push_back(d); int sz = x.size(); vector<double> y(x.begin()+sz/2, x.end()); x.resize(sz/2); LeastSquare ls(x, y); ls.print(); cout<<"Input x:\n"; double x0; while(cin>>x0) { cout<<"y = "<<ls.getY(x0)<<endl; cout<<"Input x:\n"; } } }



### 移动最小二乘法简介 移动最小二乘法(Moving Least Squares, MLS)是一种用于数据平滑和曲面重建的方法,在计算机图形学、数值分析等领域有广泛应用。该方法通过局部加权回归来拟合数据点,从而获得更光滑的结果。 ### C++ 实现概述 对于MLS算法的C++实现,通常涉及以下几个核心部分: - 数据结构定义:存储输入点集及其权重函数 - 权重计算:基于距离度量确定各点的影响范围 - 局部多项式拟合:在每个查询位置执行最小二乘优化求解 - 结果输出:生成新的插值点或变形后的网格顶点坐标 下面给出一个简化版的一维MLS近似实现示例[^1]: ```cpp #include <iostream> #include <vector> #include <cmath> // 定义节点类表示样本点(x,y) class Node { public: double x; double y; Node(double _x=0.0, double _y=0.0):x(_x),y(_y){} }; // 计算两点间欧氏距离平方 double dist_sq(const Node& p1, const Node& p2){ return (p1.x-p2.x)*(p1.x-p2.x); } // 高斯核函数作为权重函数w(d)=exp(-d^2/(2*sigma^2)) double gaussian_kernel(double d_squared, double sigma){ return exp(-d_squared / (2 * sigma * sigma)); } std::pair<double,double> mls_approximation( std::vector<Node>& points, double query_x, double bandwidth){ int n = points.size(); double sum_w = 0; // 总权重 double numerator_a = 0; // 分子A项累加器 double denominator_b = 0; // 分母B项累加器 for(int i=0;i<n;++i){ auto &pi = points[i]; // 计算当前采样点到查询点的距离平方 double dij_sq = dist_sq(pi,Node(query_x,0)); // 使用高斯核函数得到权重wi double wi = gaussian_kernel(dij_sq,bandwidth); // 更新各项累积值 sum_w += wi; numerator_a += pi.y * wi; denominator_b += wi; } // 返回最终估计值f*(query_x) if(sum_w==0 || denominator_b==0)return {0.,0.}; double approximated_y=numerator_a/denominator_b; return {approximated_y,sum_w}; } ``` 此代码片段展示了如何利用一维情况下的移动最小二乘法来进行简单的曲线拟合操作。实际应用中可能还需要考虑更高维度的空间以及更加复杂的基底形式。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值