4【线性分类器】

这篇博客探讨了图像分类的不同表示方式,包括二进制、灰度和RGB图像,并详细解释了线性分类器如何通过权值和图像列向量进行决策。它还介绍了损失函数作为衡量分类器性能的标准,以及如何评估预测值与真实值之间的不一致程度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像分类:二进制图像(0,1),灰度图像(0-255),彩色图像(R G B)
图像表示:【大多数分类算法都要求输入向量

线性分类器决策:每一类的权值 点乘 上这张图像的列向量 再加上偏移值 分别得到一个分数,比较分数,分数最高即为最优选择
【行数由类别个数决定】
决策步骤

矩阵表示形式:
矩阵表示线性分类器的决策边界 就是最终分数等于0的线,线的两边是两种决策结果
决策边界图
判断分类器效果的标准:损失函数
损失函数:用于度量给定分类器的预测值与真实值的不一致程度,它的输出通常是一个非负实数(损失值)
【 如果最终计算的值高于其他值,但是差值不超过1,则肯定有损失值(两个值的差值和1差了多少,即为损失值)】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值