DGCNN An end-to-end deep learning architecture for graph classification

AAAI-18

圣路易斯华盛顿大学计算机科学与工程系

代码:https://github.com/muhanzhang/DGCNN

内容:常见的文本和图能够进行卷积,是因为隐含有顺序结构。比如说图上的CNN,如果将图上的像素点进行打乱的话,再好的CNN也无法处理了

那么怎么样才能处理无序的图结构数据呢?答案很简单,让它有序就行了。怎么有序?排序啊。

步骤:

  1. 先使用多层聚合函数进行节点信息的聚合,更新节点信息
  2. 将得到的节点特征排序
  3. 将排完序的节点特征继续拼接成一维,然后直接一维卷积走起

1 模型的实现

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值