深度学习在图像超分辨率重建中的应用

本文介绍了深度学习在图像超分辨率重建中的应用,包括SRCNN、DRCN、ESPCN、VESPCN和SRGAN等方法。这些方法通过神经网络学习低分辨率到高分辨率的映射,提高了图像重建质量和效率。SRCNN使用三层卷积网络,DRCN引入递归神经网络,ESPCN采用亚像素卷积提升效率,VESPCN利用时空网络和运动补偿处理视频图像,而SRGAN则利用生成对抗网络恢复图像细节,实现更逼真的超分辨率效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

同步更新于知乎:https://zhuanlan.zhihu.com/p/25532538

超分辨率技术(Super-Resolution)是指从观测到的低分辨率图像重建出相应的高分辨率图像,在监控设备、卫星图像和医学影像等领域都有重要的应用价值。SR可分为两类:从多张低分辨率图像重建出高分辨率图像和从单张低分辨率图像重建出高分辨率图像。基于深度学习的SR,主要是基于单张低分辨率的重建方法,即Single Image Super-Resolution (SISR)。

SISR是一个逆问题,对于一个低分辨率图像,可能存在许多不同的高分辨率图像与之对应,因此通常在求解高分辨率图像时会加一个先验信息进行规范化约束。在传统的方法中,这个先验信息可以通过若干成对出现的低-高分辨率图像的实例中学到。而基于深度学习的SR通过神经网络直接学习分辨率图像到高分辨率图像的端到端的映射函数。

本文介绍几个较新的基于深度学习的SR方法,包括SRCNN,DRCN, ESPCN,VESPCN和SRGAN等。

1, SRCNN

Super-Resolution Convolutional Neural Network (SRCNN, PAMI 2016, 代码)是较早地提出的做SR的卷积神经网络。该网络结构十分简单,仅仅用了三个卷积层。

这里写图片描述

该方法对于一个低分辨率图像,先使用双三次(bicubic)插值将其放大到目标大小,再通过三层卷积网络做非线性映射,得到的结果作为高分辨率图像输出。作者将三层卷积的结构解释成与传统SR方法对应的三个步骤:图像块的提取和特征表示,特征非线性映射和最终的重建。

三个卷积层使用的卷积核的大小分为为9x9, 1x1和5x5,前两个的输出特征个数分别为64和32. 该文章分别用Timofte数据集(包含91幅图像)和ImageNet大数据集进行训练。相比于双三次插值和传统的稀疏编码方法,SRCNN得到的高分辨率图像更加清晰,下图是一个放大倍数为3的例子。

这里写图片描述

对SR的质量进行定量评价常用的两个指标是PSNR(Peak Signal-to-Noise Ratio)和SSIM(Structure Similarity Index)。这两个值越高代表重建结果的像素值和金标准越接近,下图表明,在不同的放大倍数下,SRCNN都取得比传统方法好的效果。

这里写图片描述

2, DRCN

SRCNN的层数较少,同时感受野也较小(13x13)。DRCN (Deeply-Recursive Convolutional Network for Image Super-Resolution, CVPR 2016, 代码)提出使用更多的卷积层增加网络感受野(41x41),同时为了避免过多网络参数,该文章提出使用递归神经网络(RNN)。网络的基本结构如下:

这里写图片描述

与SRCNN类似,该网络分为三个模块,第一个是Embedding network,相当于特征提取,第二个是Inference network, 相当于特征的非线性变换,第三个是Reconstruction network,即从特征图像得到最后的重建结果。其中的Inference network是一个递归网络,即数据循环地通过该层多次。将这个循环进行展开,就等效于使用同一组参数的多个串联的卷积层,如下图所示:

这里写图片描述

其中的 H1 HD

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值