【专题三】二分查找(1):深度解刨二分思想和二分模板

📝前言说明:

  • 本专栏主要记录本人的基础算法学习以及LeetCode刷题记录,按专题划分
  • 每题主要记录:(1)本人解法 + 本人屎山代码;(2)优质解法 + 优质代码;(3)精益求精,更好的解法和独特的思想(如果有的话)
  • 文章中的理解仅为个人理解。如有错误,感谢纠错

🎬个人简介:努力学习ing
📋本专栏:C++刷题专栏
📋其他专栏:C语言入门基础python入门基础C++学习笔记Linux
🎀CSDN主页 愚润泽

二分查找算法介绍

因为我之前用python写题的时候也写过二分查找,也有点心得:
https://blog.csdn.net/tan_run/article/details/145514702
如今再学,任深感不足。通过 704 和 34 题再度感受和理解二分查找。


704. 二分查找

在这里插入图片描述

暴力解法:
遍历数组,依次和target比较,时间复杂度:O(n)

暴力解法的局限在于:每次只能判断一个数,没有利用数组升序的特点

更好的解法:二分查找。利用数组有序的特点,那怎么利用呢?

假设我们随机取一个下标i,将nums[i]target比较,如果nums[i] < target,又因为数组有序,所以:nums[i]左边的数都小于target,我们就可以直接排除左边的区间。

而上面所体现的也叫做二段性每次“选点”,通过该点可以让我们把探索区域划分成两份,并且能够排除一段区域。(只是选中点的时候,数学期望最小(易证),所以我们通常取中点,也叫做二分)

朴素二分查找模板

闭区间写法:
在这里插入图片描述

  • .......:根据二段性的特点来填写
  • while(left <= right):因为是闭区间写法,区间不为空,还要判断
  • left + (right - left) / 2:防溢出写法

34. 在排序数组中查找元素的第一个和最后一个位置

在这里插入图片描述
暴力解法:
从头到尾遍历数组,时间复杂度:O(n)

二分查找(利用二段性):

  • 先找左端点:左端点左边的元素 < t;左端点及左端点右边的元素 >= t。于是,我们就可以发现二段性:当nums[mid] < t,左端点一定严格mid的右边[mid + 1, right](画图很好理解) ,left更新为mid + 1;当nums[mid] >= t的时候,左端点一定在[left, mid]mid位置不能排除,因为有可能mid就是左端点,right更新为mid
  • 上面这种方法其实是左闭右开区间的写法,right所在位置已经判断过了,循环条件while(left < right),因为当 left == right 的时候已经是空区间循环不变量right始终指向 >= t 的数字
  • 求中点操作:在左闭右开这种写法里面,当有两个中间值时(数组长度为偶数),必须要选择前一个:left + (right - left) / 2

重点:以上总结找左端点>=(左闭右开区间写法):

  • 如果nums[mid] < t,则右端点肯定在:[mid + 1, right]
  • 如果nums[mid] >= t,则右端点肯定在:[left, mid]
  • 循环条件,while(left < right)(因为是左闭右开的)
  • 求中点操作:left + (right - left) / 2 取前面的中点
  • 循环不变量:right始终指向第一个>= t的数

PS:多举例子,找极端例子看特殊情况

当然我们也可以直接写找右端点<=的:

  • 如果nums[mid] <= t,则右端点肯定在:[mid, right]
  • 如果nums[mid] > t,则右端点肯定在:[left, mid - 1]
  • 循环条件,while(left < right)(因为是左开右闭
  • 求中点操作:left + (right - left + 1) / 2 取后面的中点

其他方法:在>=的基础上转换:
在这里插入图片描述

题解代码:

class Solution {
public:
    vector<int> searchRange(vector<int>& nums, int target) {
        if(nums.size() == 0)
        {
            return {-1, -1};
        }
        // 二分左端点 >= 
        int left = 0, right = nums.size() - 1;
        while(left < right)
        {
            int mid = left + (right - left) / 2; // 防止溢出
            if(nums[mid] < target)
                left = mid + 1;
            else
                right = mid;
        }
        if(nums[right] != target)
            return {-1, -1}; // 代表没有target
        int begin = right;

        // 找右端点(左端点不重置)
        left = begin, right = nums.size() - 1;
        while(left < right)
        {
            int mid = left + (right - left + 1) / 2;
            if(nums[mid] <= target)
                left = mid;
            else
                right = mid - 1;
        }
        return {begin, right};
    }
};

二分模板

在这里插入图片描述
口诀:

  • mid:下面出现 -1,上面就要 +1
  • if...else...:根据二段性写出

为什么呢?

首先,左右两种模板的取mid区别是:左边是向下取整,右边是向上取整

以右边模板为例:
右边模板的收缩范围:[mid, right][left, mid - 1]
如果此时剩余区间为:[right - 1, right],向下取整则mid = right - 1。如果,最后的判断进入if,则left = mid = right - 1和原来无异,就会死循环。
如果是向上取整:mid = right,进入ifleft = right,进入elseright = right - 1,两条语句都变化了,就不会死循环


🌈我的分享也就到此结束啦🌈
要是我的分享也能对你的学习起到帮助,那简直是太酷啦!
若有不足,还请大家多多指正,我们一起学习交流!
📢公主,王子:点赞👍→收藏⭐→关注🔍
感谢大家的观看和支持!祝大家都能得偿所愿,天天开心!!!

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愚润泽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值