4.3.2 蓝桥杯动态规划之自下而上的树形DP
引言
在解决编程竞赛中的树形数据结构问题时,动态规划是一种强有力的工具。与自上而下的方法不同,自下而上的树形动态规划(Bottom-Up Tree DP)从树的叶子节点开始,逐步向上计算至根节点。这种方法在处理某些类型的问题时更加高效,尤其是当问题的解决依赖于子树的信息汇总时。
自下而上的树形DP基础
自下而上的树形DP通常在每个节点收集和汇总其所有子节点的信息。这种方法特别适用于那些需要从底层向上层聚合信息的问题。
状态定义和转移
在自下而上的树形DP中,状态的定义和转移是核心。通常,状态是关于节点的某些量化信息,如最大值、最小值、总和等。状态的转移是从子节点到父节点的过程。
示例问题
假设我们有一个问题:在一棵每个节点都有权值的树中,找出每个节点的子树总权值。
状态定义
在这个问题中,我们可以定义状态 dp[u]
为节点 u
的子树总权值,包括节点 u
本身。
状态转移
对于树中的每个节点 u
,状态转移可以表示为:
dp[u] = weight[u] + sum(dp