opencv下载安装及VS配置(笔记)

1、opencv下载及安装

        官网地址:https://opencv.org/,点击Releases进入下载界面:

根据自己的需要下载相应的版本,这里我下载的是opencv-4.10版本:

找到下载的exe文件:

双击安装,选择安装路径:

安装完成后,安装路径下会出现一个opencv文件夹,文件夹内容如下:

 其中build是OpenCV使用时要用到的一些库文件,而sources中则是OpenCV官方为我们提供的一些demo示例源码。

2、配置相关环境变量:

右键此电脑->属性->高级系统设置->环境变量->系统变量,找到Path变量,选中后点击编辑,

找到opencv文件夹,依次选择build->x64->vc16->bin,复制路径D:\opencv\build\x64\vc16\bin; 点击新建,输入复制的路径到path环境变量中,点击确定,环境变量到此就配置好了。

3、Visual Studio下配置opencv

vs版本:Visual Studio2022 ,打开VS,新建一个空项目

根据需要修改项目路径,点击创建,得到一个空项目,

添加包含目录:项目->属性->VC++目录->包含目录->编辑
添加这两个目录:
D:\opencv\build\include
D:\opencv\build\include\opencv2 

添加库目录:项目->属性->VC++目录->库目录->编辑
添加这个目录:D:\opencv\build\x64\vc16\lib

添加附加依赖项:项目->属性->链接器->输入->附加依赖项->编辑

添加D:\opencv\build\x64\vc16\lib目录下的依赖项,
这里有两个文件opencv_world4100.lib和opencv_world4100d.lib
如果配置为Debug,选择opencv_world4100d.lib
如果为Release,选择opencv_world4100.lib

【注意】:每个版本的OpenCV依赖项都不相同,请仔细查看!!!

我这里是:
opencv_world4100d.lib

 到此,opencv的所有安装配置都完成了。

4、验证是否安装成功

添加一个.cpp文件用来编写代码:右键资源文件->添加->新建项

根据需要更改文件名,点击添加: 

                    

输入代码:

#include <iostream>
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;

int main()
{
	//加载图片,opencv中图片用Mat表示,
	Mat src = imread("F:/download/1.png");
	if (src.empty())
	{
		printf("could not load image...\n"); 
		return -1;
	}
	//不加这句会窗口自适应图片大小不可调整大小,加了之后可以调整大小
	namedWindow("test opencv setup", WINDOW_FREERATIO);

	//根据图片大小创建一个窗口显示图片
	imshow("test opencv setup", src);

	waitKey(0);
	return 0;
}

 运行程序,若程序能正常调试运行且输出一张图片,则证明opencv安装准确无误。

### 解决 PP-OCRv4 出现的错误 当遇到 `WARNING: The pretrained params backbone.blocks2.0.dw_conv.lab.scale not in model` 这样的警告时,这通常意味着预训练模型中的某些参数未能匹配到当前配置下的模型结构中[^2]。 对于此问题的一个有效解决方案是采用特定配置文件来适配预训练权重。具体操作方法如下: 通过指定配置文件 `ch_PP-OCRv4_det_student.yml` 并利用已有的最佳精度预训练模型 (`best_accuracy`) 来启动训练过程可以绕过上述不兼容的问题。执行命令如下所示: ```bash python3 tools/train.py -c configs/det/ch_PP-OCRv4/ch_PP-OCRv4_det_student.yml ``` 该方案不仅解决了参数缺失带来的警告,还能够继续基于高质量的预训练成果进行微调,从而提升最终检测效果。 关于蒸馏的概念,在机器学习领域内指的是将大型复杂网络(teacher 模型)的知识迁移到小型简单网络(student 模型)。这里 student 和 teacher 的关系是指两个不同规模或架构的神经网络之间的指导与被指导的关系;其中 teacher 已经经过充分训练并具有良好的性能,而 student 则试图模仿前者的行为模式以达到相似的效果但保持更高效的计算特性。 至于提到的 `Traceback` 错误信息部分,由于未提供具体的跟踪堆栈详情,难以给出针对性建议。不过一般而言,这类报错往往涉及代码逻辑错误或是环境配置不当等问题。为了更好地帮助定位和解决问题,推荐记录完整的异常日志,并仔细检查最近修改过的代码片段以及确认依赖库版本的一致性。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值