
算法
ciki_tang
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
LSTM缓解梯度消失问题
LSTM缓解梯度消失总结原创 2023-11-06 11:48:50 · 808 阅读 · 0 评论 -
剪枝Prune
剪枝原理性文章原创 2022-09-25 20:44:16 · 516 阅读 · 0 评论 -
主成分分析PCA
PCA原创 2022-09-25 20:26:10 · 593 阅读 · 0 评论 -
交叉熵损失函数Cross Entroy
一般用于多分类问题中主要介绍多分类问题的交叉熵函数N代表样本数M代表label的数目,分类的数目: 样本i 等于分类的label c 时=1,其他为0:样本 i 属于类别 c 的概率原创 2021-12-07 10:00:25 · 330 阅读 · 0 评论 -
Adaboost算法
Adaboost 算法的原理与推导_结构之法 算法之道-CSDN博客_adaboost算法原理(十三)通俗易懂理解——Adaboost算法原理 - 知乎Adaboost算法原理分析和实例+代码(简明易懂)_pan_jinquan的博客-CSDN博客_adaboost算法实例Boosting学习笔记(Adboost、GBDT、Xgboost) - Will的笔记 - 博客园算法篇:SGD+logistic+Adaboost构建快速迭代增强式LR模型_yycc-CSDN博客AdaBoost的.原创 2021-11-22 21:54:27 · 625 阅读 · 0 评论 -
CNN 、 1*1 卷积核 学习笔记
feature map尺寸是指W,H上共享权值的 sliding window, feature map的数量是 channels卷积层:滤波器filter个数,卷积层中的权值称为滤波器 filter或 卷积核,使用一个 filter对输入进行卷积得到一个特征图 feature map,使用多个滤波器同时对输入进行卷积得到多个特征图。 感受野 (receptive field) F,滤波器空间局部连接的大小, 3*3, 5*5 零填补 (zero padding) P,卷积过程...原创 2021-10-08 15:55:49 · 1013 阅读 · 0 评论 -
李宏毅 Transformers
Sequence to sequence (Seq2seq)input a sequence, ouput a sequence. The ouput length is determined by model.application: speech recognition/ machine translaion/ speech translationQuestion Answering (QA)QA can be done by seq2seqResidu...原创 2021-10-06 01:02:34 · 113 阅读 · 0 评论 -
李宏毅 Normalization
对L影响很小。假设 input很小,对L影响很小Feature normalization,对所有输入进行 normalization可以在 activication之前或者之后做 normalization, sigmoid函数最好是在activiation之前做gama初始为1, beta初始为0加BN时候 error surface就会比较平滑,比较不崎岖, learning rate可以设置比较大...原创 2021-10-06 00:11:45 · 123 阅读 · 0 评论 -
XGBoost与LightGBM 数据科学家常用工具大PK——性能与结构
https://www.youtube.com/watch?v=dOwKbwQ97tI&list=RDLVWeHM2xpYQpw&index=4原创 2021-10-05 23:50:35 · 81 阅读 · 0 评论 -
李宏毅 Attention
考虑整个 sequence长度的内容可以多层 self attention叠加 attention is all you need1, dafadaalpha : attention score代表两个输入的关联性b1~b4并行产生Muti-head self attentionPositional EncodingNo position information in self attentioneach...原创 2021-10-05 23:49:02 · 317 阅读 · 0 评论 -
李宏毅 CNN
总结:可以使用CNN网络的场景(要类似图像处理才可以)some patterns are much smaller that the whole image The same patterns appers in different regions Alpha Go does not use Pooling可以取小的 patterns并且相同的 patterns可以出现在不同的地区pooling可以视情况而定receptive fieldall channels ...原创 2021-10-05 23:14:09 · 96 阅读 · 0 评论