25、算法性能分析

算法性能分析

1. 算法复杂度

在计算机科学中,算法复杂度是用来衡量算法效率的重要指标。它主要包括时间复杂度和空间复杂度。时间复杂度描述了算法运行时间随输入规模增长的速度,通常用大O符号表示。例如,一个线性时间复杂度的算法表示为O(n),意味着其运行时间与输入规模呈线性关系。常见的复杂度等级包括常数时间O(1)、对数时间O(log n)、线性时间O(n)、线性对数时间O(n log n)、平方时间O(n²)等。

空间复杂度则描述了算法在运行过程中所需的额外存储空间。它同样使用大O符号表示,例如,一个算法如果只需要固定大小的额外空间,则其空间复杂度为O(1)。

表1:常见算法复杂度对比

算法名称 时间复杂度 空间复杂度
快速排序 O(n log n) O(log n)
归并排序 O(n log n) O(n)
冒泡排序 O(n²) O(1)
二分查找 O(log n) O(1)
线性查找
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值