算法性能分析
1. 算法复杂度
在计算机科学中,算法复杂度是用来衡量算法效率的重要指标。它主要包括时间复杂度和空间复杂度。时间复杂度描述了算法运行时间随输入规模增长的速度,通常用大O符号表示。例如,一个线性时间复杂度的算法表示为O(n),意味着其运行时间与输入规模呈线性关系。常见的复杂度等级包括常数时间O(1)、对数时间O(log n)、线性时间O(n)、线性对数时间O(n log n)、平方时间O(n²)等。
空间复杂度则描述了算法在运行过程中所需的额外存储空间。它同样使用大O符号表示,例如,一个算法如果只需要固定大小的额外空间,则其空间复杂度为O(1)。
表1:常见算法复杂度对比
算法名称 | 时间复杂度 | 空间复杂度 |
---|---|---|
快速排序 | O(n log n) | O(log n) |
归并排序 | O(n log n) | O(n) |
冒泡排序 | O(n²) | O(1) |
二分查找 | O(log n) | O(1) |
线性查找 |