自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(58)
  • 资源 (10)
  • 收藏
  • 关注

原创 【AI Study】第五天,Matplotlib(10)- 实际应用

数据分析可视化(时间序列分析、统计分析、地理数据可视化)科学计算可视化(数学函数、物理模拟、工程计算)交互式应用(数据探索、参数调整、实时更新)报告生成(自动报告、批量处理、格式转换)进行数据分析和可视化展示科学计算结果创建交互式应用生成专业报告选择合适的可视化方法注重交互性优化性能保持代码可维护性考虑用户体验注意数据安全。

2025-06-20 14:16:16 177

原创 【AI Study】第五天,Matplotlib(9)- 最佳实践

代码组织(模块化设计、函数封装、类设计)性能优化(减少重绘、优化数据结构、使用适当的方法)错误处理(异常捕获、数据验证、日志记录)文档规范(代码注释、函数文档、示例说明)提高代码可维护性优化性能增强可靠性改善可读性遵循模块化设计注重性能优化做好错误处理保持文档规范编写测试用例进行代码审查。

2025-06-20 14:15:44 100

原创 【AI Study】第五天,Matplotlib(8)- 实用工具

创建自定义样式文件'''# 保存样式文件# 使用自定义样式plt.title('使用自定义样式')plt.show()样式表(使用内置样式、创建自定义样式、样式管理)工具包(axisartist、axes_grid1、mplot3d)导出功能(保存图片、导出 PDF、导出 SVG)调试工具(图形检查、性能分析、内存分析)统一图形样式扩展绘图功能导出高质量图形优化性能合理使用样式表选择适当的工具包注意导出质量进行性能优化监控内存使用保持代码整洁。

2025-06-20 14:15:10 273

原创 【AI Study】第五天,Matplotlib(7)- 高级特性

创建图形# 定义自定义事件处理函数print('自定义事件触发')# 绑定事件# 触发自定义事件plt.show()# 创建自定义后端# 创建图形# 在图形中绘图# 保存图形动画(创建动画、保存动画、交互式动画)事件处理(鼠标事件、键盘事件、自定义事件)后端设置(选择后端、配置后端、自定义后端)性能优化(渲染优化、内存管理、批处理)创建动态可视化实现交互功能优化性能提升用户体验合理使用动画优化事件处理选择合适后端注意性能问题管理内存使用。

2025-06-20 14:14:34 277

原创 【AI Study】第五天,Matplotlib(6)- 多图形布局

子图创建(单个子图、多个子图、子图网格)复杂布局(跨行跨列、不规则布局、子图镶嵌)图形组合(组合多个图形、共享坐标轴、图形对齐)布局优化(自动调整、手动调整、布局约束)组织多个相关图表创建复杂的布局优化图表展示提升图表专业性合理规划布局保持布局清晰注意子图间距考虑图表整体性避免过度复杂注重实用性。

2025-06-20 14:14:03 178

原创 【AI Study】第五天,Matplotlib(5)- 颜色映射

创建自定义颜色映射# 使用自定义颜色映射plt.title('自定义颜色映射')plt.show()# 创建离散颜色映射# 设置颜色条标签plt.colorbar(label='数值')# 设置颜色条刻度# 设置颜色条格式# 设置颜色条大小颜色映射类型(pcolormesh、contourf、imshow、scatter)颜色映射设置(选择颜色映射、创建自定义颜色映射、第三方颜色映射)数据标准化(线性标准化、对数标准化、其他标准化方法)

2025-06-20 14:13:28 336

原创 【AI Study】第五天,Matplotlib(4)- 坐标轴设置

坐标轴刻度(自动刻度、手动刻度、刻度定位器、刻度格式化器)坐标轴范围(设置范围、自动缩放、对数刻度)特殊数据类型(日期时间、分类数据、字符串)多坐标轴(双 y 轴、双 x 轴、次坐标轴)精确控制坐标轴显示适应不同类型的数据创建复杂的多轴图表提升图表可读性合理设置刻度注意数据范围考虑数据类型保持图表清晰避免过度复杂注重实用性。

2025-06-20 14:12:55 216

原创 【AI Study】第五天,Matplotlib(3)- 图形标注

设置图例样式plt.legend(frameon=True, # 显示边框framealpha=0.5, # 边框透明度edgecolor='black', # 边框颜色facecolor='white', # 背景颜色fontsize=12, # 字体大小title_fontsize=14) # 标题字体大小# 设置图例列数plt.legend(ncol=2) # 两列显示# 设置图例标记plt.legend(markerscale=2) # 放大标记。

2025-06-20 14:12:17 175

原创 【AI Study】第五天,Matplotlib(2)- 基础绘图

简单示例(创建图形、绘制数据、显示图形)输入数据类型(NumPy 数组、Pandas 数据对象、字典和结构化数组)基本图形类型(折线图、散点图、柱状图、饼图)图形样式(颜色设置、线宽和线型、标记大小和样式)创建基本的可视化图表处理不同类型的数据自定义图表样式展示数据特征选择合适的图表类型注意数据格式转换合理设置图形样式保持图表清晰易读添加必要的标注考虑图表美观性。

2025-06-20 14:11:40 151

原创 【AI Study】第五天,Matplotlib(1)- 基础知识

Matplotlib 是 Python 最流行的绘图库之一,它提供了一个完整的 2D 绘图系统,可以生成各种静态、动态、交互式的可视化图表。Matplotlib 的设计理念是让简单的事情保持简单,让复杂的事情变得可能。Matplotlib 简介(定义、特点、比较)安装与配置(安装、导入、版本检查)基本概念(Figure、Axes、Axis、Artist)绘图风格(显式接口、隐式接口、混合使用)理解 Matplotlib 的核心概念正确安装和配置环境选择合适的绘图风格。

2025-06-20 14:09:14 512

原创 【AI Study】第四天,Pandas(10)- 实用技巧

常用操作(数据检查、数据验证、数据转换)调试技巧(问题诊断、性能分析、内存分析)工具集成(与其他库的集成、工作流自动化、环境配置)实际应用示例提高代码质量优化性能增强可维护性提升开发效率合理使用工具函数注意代码性能做好错误处理保持代码整洁注重代码复用持续学习新特性关注最佳实践。

2025-06-19 10:52:51 124

原创 【AI Study】第四天,Pandas(9)- 进阶主题

基本函数应用"""计算奖金Args:salary (float): 基本工资performance (float): 绩效分数 (0-1)Returns:float: 奖金金额"""# 应用到 DataFrameaxis=1# 使用 applymap 应用到所有元素"""格式化货币Args:x (float): 金额Returns:str: 格式化后的金额"""return f"$

2025-06-18 21:43:12 159

原创 【AI Study】第四天,Pandas(8)- 最佳实践

代码规范(命名规范、代码结构、注释规范)性能调优(代码优化、内存管理、执行效率)错误处理(异常处理、数据验证、日志记录)实际应用示例提高代码可读性提升代码性能增强代码可靠性便于维护和协作遵循代码规范注重性能优化做好错误处理保持代码简洁编写清晰注释进行代码审查持续改进代码。

2025-06-18 21:42:58 141

原创 【AI Study】第四天,Pandas(7)- 实际应用

数据分析案例(金融数据分析、销售数据分析、用户行为分析)数据挖掘(特征工程、数据预处理、模型数据准备)数据报告(数据汇总、报表生成、自动化报告)实际应用示例处理实际业务问题提取有价值的 insights生成专业的数据报告支持决策制定理解业务需求选择合适的方法注重数据质量保持代码可维护性重视结果可视化关注性能优化持续学习和改进。

2025-06-18 21:42:45 251

原创 【AI Study】第四天,Pandas(6)- 性能优化

内存优化(数据类型优化、内存使用分析、内存清理)计算优化(向量化操作、并行计算、分块处理)大数据处理(分块读取、增量处理、分布式处理)实际应用示例减少内存使用提高计算效率处理大规模数据优化代码性能选择合适的数据类型使用向量化操作合理使用分块处理考虑使用分布式计算定期进行性能分析及时清理内存优化代码结构。

2025-06-18 21:42:30 250

原创 【AI Study】第四天,Pandas(5)- 数据可视化

设置全局样式# 自定义颜色# 自定义字体# 自定义网格# 自定义图例基础图表类型(折线图、柱状图、散点图、饼图)高级可视化技术(多子图、自定义样式、交互式图表)统计图表(箱线图、直方图、密度图、热力图)实际应用示例直观地展示数据特征和趋势发现数据中的规律和异常有效地传达分析结果支持决策制定建议通过实际项目多加练习,熟悉各种可视化方法的适用场景和组合使用方式。选择合适的图表类型保持图表的简洁性和可读性使用适当的颜色和样式添加必要的标题和标签。

2025-06-18 21:42:15 328

原创 【AI Study】第四天,Pandas(4)- 时间序列处理

时间序列的基本概念和操作时间索引和重采样技术时间移动和窗口操作时间序列分析方法实际应用示例掌握时间序列处理技术对于分析时间相关的数据至关重要。发现数据的时间趋势和模式进行时间序列预测分析季节性变化处理不规则时间数据建议通过实际项目多加练习,熟悉各种时间序列处理方法的适用场景和组合使用方式。

2025-06-18 21:42:00 186

原创 【AI Study】第四天,Pandas(3)- 数据处理进阶

数据转换技术数据合并方法数据分组和聚合数据透视表操作实际应用示例这些进阶数据处理技术是进行复杂数据分析的基础。掌握这些技术可以帮助我们更好地处理和分析数据,发现数据中的规律和趋势。在实际应用中,这些技术往往需要结合使用,以达到最佳的分析效果。建议通过实际项目多加练习,熟悉各种方法的适用场景和组合使用方式。

2025-06-18 21:41:45 245

原创 【AI Study】第四天,Pandas(2)- 数据操作基础

使用自定义排序顺序custom_order = ['低', '中', '高']df['列名'] = pd.Categorical(df['列名'], categories=custom_order, ordered=True)df.sort_values('列名')各种文件格式的读写操作数据选择和过滤的方法数据清洗和转换技术数据排序和自定义排序实际应用示例掌握这些基础数据操作技能对于进行数据分析至关重要。在实际工作中,这些操作往往是数据分析的第一步,为后续的深入分析打下基础。

2025-06-18 21:41:25 242

原创 【AI Study】第四天,Pandas(1)- 基础知识

Pandas 是 Python 中最流行的数据分析库之一,它提供了高性能、易用的数据结构和数据分析工具。Pandas 的名字来源于 “Panel Data”(面板数据),这是一个计量经济学术语,用于描述多维结构化数据集。Pandas 的基本概念和特点安装和配置方法核心数据结构(Series 和 DataFrame)各种数据类型的处理方法实际应用示例这些基础知识是使用 Pandas 进行数据分析的基础,掌握这些内容后,您就可以开始进行更复杂的数据分析工作了。

2025-06-18 21:41:09 462 1

原创 【AI Study】第三天,NumPy(8)- 实用技巧

数组操作使用自动计算维度选择合适的复制方法优化索引操作注意内存布局性能优化优先使用向量化操作选择合适的数据类型利用并行计算使用性能分析工具内存管理使用内存映射及时释放内存优化内存布局监控内存使用本文介绍了一些实用的 NumPy 技巧,包括数组操作、性能优化、内存管理等方面。这些技巧可以帮助我们编写更高效、更可靠的 NumPy 代码。在实际应用中,需要根据具体场景选择合适的技巧和方法。

2025-06-18 16:14:31 370

原创 【AI Study】第三天,NumPy(7)- 进阶学习

1. 创建简单的结构化数据类型('name', 'U10'), # 10个字符的Unicode字符串('age', 'i4'), # 32位整数('height', 'f4') # 32位浮点数])# 创建结构化数组print("结构化数组:\n", people)print("\n访问特定字段:")print("姓名:", people['name'])print("年龄:", people['age'])print("身高:", people['height'])

2025-06-18 16:13:58 362

原创 【AI Study】第三天,NumPy(6)- 最佳实践

性能优化优先使用向量化操作避免不必要的数组复制使用适当的数据类型及时释放不需要的内存代码质量使用有意义的变量名添加适当的注释封装复杂操作使用类型提示调试和测试使用性能分析工具实现适当的错误处理添加日志记录编写单元测试本文介绍了 NumPy 的最佳实践,包括代码优化、内存管理、调试技巧等方面。通过遵循这些最佳实践,可以编写出更高效、更可维护的 NumPy 代码。在实际应用中,需要根据具体场景选择合适的优化策略和工具。

2025-06-18 16:13:19 378

原创 【AI Study】第三天,NumPy(5)- 高级应用

本文介绍了 NumPy 的高级应用,包括性能优化、与其他库的集成以及实际应用案例。通过掌握这些高级特性和优化技巧,我们可以更高效地进行科学计算和数据分析。在实际应用中,需要根据具体场景选择合适的优化策略和工具。

2025-06-18 16:02:38 282

原创 【AI Study】第三天,NumPy(4)- 核心功能

本文介绍了 NumPy 的核心功能,包括数学运算、高级数组操作和文件处理。这些功能使得 NumPy 成为科学计算和数据分析的强大工具。掌握这些核心功能,可以帮助我们更高效地进行数据分析和科学计算。

2025-06-18 15:59:18 258

原创 【AI Study】第三天,NumPy(3)- 基础知识

本文介绍了 NumPy 的基础知识,包括安装配置、数组创建、属性访问、基本操作等内容。掌握这些基础知识对于后续深入学习 NumPy 的高级特性和应用至关重要。在实际应用中,建议多练习这些基础操作,并注意观察数组的内存使用和性能表现。

2025-06-18 15:55:16 341

原创 【AI Study】第三天,NumPy(2)- 知识图谱

NumPy的官方文档并没有明确指出其发音,但根据英语单词的常规发音规则NumPy可以读作/ˈnʌmpaɪ/,也可以读作/ˈnʌmpi/,类似于“那亩派”或“那姆皮”的发音。网上比较通行的读法是“num pie”。

2025-06-03 21:45:40 249

原创 【AI Study】第三天,NumPy(1)- 同NumPy类似的类库

在学习NumPy的过程中,除了了解NumPy之外,我们也对比看看其他类似的类库都有什么?:基于NumPy构建的高性能数据分析库,提供了DataFrame和Series等数据结构。:结合NumPy和Autograd的高性能数值计算库,支持GPU/TPU加速。:支持并行计算的NumPy和Pandas扩展,可处理内存无法容纳的数据集。:基于NumPy的科学计算库,提供了优化、积分、信号处理等高级算法。:使用GPU加速的NumPy兼容库,通过CUDA实现高性能计算。:深度学习框架,提供张量运算和自动微分功能。

2025-05-25 16:17:07 832

原创 【AI Study】第二天,Python基础 - 数据类型

Python数据类型可分为。

2025-05-24 09:26:09 583

原创 【AI Study】第一天,多线程、文件操作

源码地址:https://github.com/co-n00b/AI-Study.git。

2025-05-23 11:46:36 891

原创 AI Study,学习计划

10年毕业,直到18年基本都在一线研发,18~21年做团队管理,参与各个角色的工作,21年开始带PM团队直到现在;也不知道是code血脉开始翻腾,还是最近对AI的兴趣导致技术无法回避,突然感觉还是喜欢Coding;遂决定:花两个月的时间复习编程技能,学习新的AI技术,成为一个合格的AI研发。在这里整理我的学习计划和进展,鞭策自己!!!

2025-05-23 11:32:11 291

原创 k8s安装kubernetes dashboard

文章目录GitHub地址一、安装k8s dashboard二、配置权限1.访问dashboard2.配置权限三、附件1.原版recommended.yaml2.修改后的recommended.yamlGitHub地址k8s dashboard的GitHub地址可以点这里。一、安装k8s dashboard首先我们参考GitHub上的说明进行安装,只需执行下面的一行命令:$ kubectl apply -f https://raw.githubusercontent.com/kubernetes/d

2021-01-27 23:26:34 1651 3

原创 The connection to the server localhost:8080 was refused - did you specify the right host or port?

问题描述:在调用kubectl命令时,出现以下错误:The connection to the server localhost:8080 was refused - did you specify the right host or port?原因分析:在执行kubectl时,首先进行本地封装,然后调用kube-apiserver执行对应命令,在这个过程中需要获取k8s集群的配置,默认为当前用户下.kube目录的config,但此时获取不到配置。解决方案:1)如果是k8s集群的master节

2021-01-25 22:40:57 2859

原创 CentOS7搭建Kubernetes v1.20集群

CentOS7搭建Kubernetes v1.20.1集群环境准备基本环境yum源配置功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入环境准备基本环境项目软件及版本操作系统Mac Mojave 10.14

2021-01-25 21:57:22 1381 4

原创 Mac VMware Fusion CentOS7配置静态IP

文章目录修改虚机网络配置查看VMware Fusion配置获取网关和子网掩码获取可用地址范围获取本机DNS地址虚拟机网络配置修改虚机网络配置查看VMware Fusion配置获取网关和子网掩码打开一个Terminal终端,进入VMware Fusion的vmnet8目录,如下图:cd /Library/Preferences/VMware\ Fusion/vmnet8/查看当前目录下的nat.conf文件,并记录其中的值:在NAT gateway address中可以看到,如果当前VM

2021-01-19 11:23:00 414

原创 CentOS7的yum无法安装,报错could not resolve host: mirrorlist.centos.org

问题描述错误信息如下:Could not retrieve mirrorlist http://mirrorlist.centos.org/?release=7&arch=x86_64&repo=os&infra=stock error was14: curl#6 - "Could not resolve host: mirrorlist.centos.org; Unknown error" One of the configured repositories failed

2021-01-19 11:19:42 1905 2

原创 CentOS7配置国内yum源

文章目录清华大学镜像仓库一、pandas是什么?二、使用步骤1.引入库2.读入数据总结清华大学镜像仓库清华大学开源软件镜像站地址:https://mirrors.cnnic.cn/一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。二、使用步骤1.引入库代码如下(示例):import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport

2021-01-18 19:06:04 599

原创 Spring Boot中文手册(10):常用的Spring Boot开发工具(二)

“ 该系列的文章主要参考Spring Boot 2.1.2.RELEASE的官方文档来进行翻译,逐步将官方文档翻译过来,方便大家共同学习和讨论,但是毕竟能力有限,如有问题,感谢大家留言指正。”3. LiveReloadspring-boot-devtools 模块包含一个内嵌的LiveReload服务器,它可以在资源改变时触发浏览器刷新。LiveReload浏览器扩展可以免费从livere...

2019-01-31 11:28:27 394

原创 Spring Boot中文手册(9):常用的Spring Boot开发工具(一)

“ 该系列的文章主要参考Spring Boot 2.1.2.RELEASE的官方文档来进行翻译,逐步将官方文档翻译过来,方便大家共同学习和讨论,但是毕竟能力有限,如有问题,感谢大家留言指正。”Spring Boot包含了一些额外的工具集,用于提升Spring Boot应用的开发体验。 spring-boot-devtools 模块可以被included到任何工程中,以提供developmen...

2019-01-31 11:00:36 4592

原创 Spring Boot中文手册(8):运行你的程序

“ 该系列的文章主要参考Spring Boot的官方文档来进行翻译,逐步将官方文档翻译过来,方便大家共同学习和讨论,但是毕竟能力有限,如有问题,感谢大家留言指正。”把项目打包成一个完整的jar包,并且使用内嵌的HTTP Server的最大好处就是你可以像启动其他应用那样启动你自己的应用程序。调试你的Spring Boot工程也很简单,不需要特定的开发IDE插件或者扩展。本章只涵盖了基于jar包...

2019-01-29 15:21:20 216

JFrame_Java_登录窗口源代码

JFrame_Java_登录窗口源代码

2013-09-22

POI处理 excel2007

POI处理 excel2007

2013-09-06

淘宝开放API_技术分析

提供淘宝的用户、旺旺、购物、资料等信息的开放API

2013-08-25

httpclient-4.5 jar

commons-codec-1.9.jar commons-logging-1.2.jar fluent-hc-4.5.jar httpclient-4.5.jar httpclient-cache-4.5.jar httpclient-win-4.5.jar httpcore-4.4.1.jar httpmine-4.5.jar jna-4.1.0.jar jna-platform-4.1.0.jar

2015-06-06

kube-flannel.yml

k8s安装Flannel插件,需要的yml配置文件

2021-01-25

持续交付-发布可靠软件的系统方法完整版(带书签)

持续交付-发布可靠软件的系统方法完整版(带书签)

2017-03-10

机器学习(美)米歇尔(Mitchell,T.M.)(清晰).pdf

国外经典名著《机器学习》,这个清晰版的pdf,比扫描的要清晰很多很多,看起来也很舒服。

2016-12-12

14天学会安卓开发

14天学会安卓开发 完整版

2013-09-03

org.apache.http jar

org.apache.http.Header; org.apache.http.HttpException; org.apache.http.HttpRequest; org.apache.http.HttpRequestInterceptor; org.apache.http.HttpResponse; org.apache.http.HttpStatus; org.apache.http.NameValuePair; org.apache.http.client.entity.UrlEncodedFormEntity; org.apache.http.client.methods.HttpGet; org.apache.http.client.methods.HttpPost; org.apache.http.conn.scheme.Scheme; org.apache.http.conn.ssl.SSLSocketFactory; org.apache.http.impl.client.DefaultHttpClient; org.apache.http.message.BasicNameValuePair; org.apache.http.params.CoreConnectionPNames; org.apache.http.protocol.HttpContext;

2015-06-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除