
感知技术前沿工作
文章平均质量分 92
智驾机器人技术前线
公众号【智驾机器人技术前线】博主
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
厦大&南洋理工最新开源,一种面向户外场景的特征-几何一致性无监督点云配准方法
本文提出了INTEGER,一种用于点云配准的无监督新方法,通过整合低层几何信息和高层上下文信息来生成可靠的伪标签。该方法引入了特征-几何一致性挖掘模块(FGCM),用于动态地对教师模型进行自适应调整,并基于特征和几何空间进行稳健的伪标签挖掘。然后,我们设计了混合密度学生(MDS)以学习密度不变的特征,并通过锚点对比学习(ABCont)实现高效的对比学习。原创 2024-11-15 20:00:43 · 1395 阅读 · 0 评论 -
LOID:有效提升遮挡条件下的车道检测精度
精确的车道检测对于自动驾驶中的有效路径规划和车道跟随至关重要,尤其是在车辆和行人遮挡显著的场景中。现有模型在这些条件下常常表现不佳,导致导航不可靠和安全风险。我们提出了两种创新方法来增强这些具有挑战性环境中的车道检测,每种方法都比当前方法有显著改进。第一种方法aug-Segment通过在CULanes训练数据集上增加模拟遮挡并训练一个分割模型来改进传统的车道检测模型。这种方法在CULanes数据集上比多个SOTA模型提高了12%,表明丰富的训练数据可以更好地处理遮挡。原创 2024-10-12 20:13:48 · 914 阅读 · 0 评论 -
首个端到端自动驾驶背景下对抗性训练研究
深度学习的最新进展显著提高了自动驾驶(AD)模型的性能,特别是将感知、预测和规划阶段整合在一起的端到端系统,实现了最先进的性能。然而,这些模型仍然容易受到对抗性攻击的影响,其中人类难以察觉的扰动可以破坏决策过程。虽然对抗性训练是提高模型对此类攻击的鲁棒性的有效方法,但之前没有研究关注将其应用于端到端的AD模型。在本文中,我们采取了端到端AD模型对抗性训练的第一步,并提出了一种新颖的模块化自适应对抗训练(MA2T)。原创 2024-09-26 20:06:28 · 1448 阅读 · 0 评论 -
多池化策略揭秘:PVAFN如何实现更精准的3D物体识别?
在基于激光雷达的3D物体检测中,点和体素表示的融合越来越普遍。然而,这种结合通常在有效捕获语义信息方面存在挑战。此外,仅依赖感兴趣区域内的点特征可能导致信息丢失和局部特征表示的限制。为了应对这些挑战,我们提出了一种新颖的两阶段3D物体检测器,称为点体素注意力融合网络(PVAFN)。PVAFN利用注意力机制在特征提取阶段改进多模态特征融合。在细化阶段,它采用多池化策略有效整合多尺度和区域特定信息。点体素注意力机制自适应地结合了点云和基于体素的鸟瞰图(BEV)特征,从而产生更丰富的物体表示,有助于减少误检。原创 2024-09-04 20:40:08 · 1442 阅读 · 0 评论 -
恶劣天气下的目标检测新突破:多尺度退化建模与特征融合策略
目标检测在场景感知和智能驾驶等领域有广泛应用。然而,受到雨、雾、雪等天气因素的干扰,恶劣天气条件下的目标检测面临重大挑战。主流方法通常未能考虑到退化图像的目标检测,并且无法有效处理它们。在本文中,我们提出了一种名为RDMNet的基于退化建模的增强型目标检测网络,用于不利天气场景。首先,为了捕获退化图像的更多潜在信息,我们将恢复思想整合到检测网络中,形成了一个双分支网络。其次,为了提高网络对不同天气类型的适应性,我们提出对退化图像的退化进行建模,并学习其多尺度退化表示,以指导恢复和检测分支中的特征转换。原创 2024-08-30 19:57:58 · 2466 阅读 · 0 评论 -
电子科大&川大开源!密集小目标突破:DMIST数据集与LASNet在红外检测中的创新应用
作为红外小目标检测的一个重要研究分支,密集目标检测(例如,无人机群检测)一直是一个值得探索的话题。目前,现有的数据集只涵盖了一个或几个(稀疏)目标,几乎没有数据集可用于密集小目标检测的研究。为了推进这类搜索,我们首次在DAUB数据上合成了两个特殊的密集移动目标数据集(DMIST-60和DMIST-100)。它们每个帧都包含50多个红外小目标。与此同时,为了评估我们的新数据集并促进检测方法研究的繁荣,我们提出了一个链接感知切片网络(LASNet)作为我们数据集的基线。原创 2024-08-20 20:15:13 · 1474 阅读 · 2 评论