深度学习中的梯度是什么意思呢?

        在神经网络训练中,梯度用于反向传播,优化模型参数。我们在使用pytorch中的torch.zeros()或者torch.tensor()函数时,会遇到一个入参:requires_grad。`requires_grad`是一个布尔值,决定张量是否需要计算梯度。如果设置为True,PyTorch会跟踪该张量的所有操作,以便后续计算梯度。这通常在模型参数中使用,因为它们需要通过梯度下降来更新。

        当然,上面的说法比较官方,不够通俗,其实我们可以把整个深度学习想象成一个迷宫,自己是一个探险家,迷宫里藏着宝藏(目标)。你的任务是找到从入口到宝藏的路径,并记住每一步怎么走,下次就能更快找到宝藏。

        但问题是——迷宫太大,你不可能记住所有路径。于是,你决定:只在关键路口放路标(比如分叉路口),其他普通直路直接忽略。

这里:

  • 迷宫路径 ➔ 神经网络的运算过程(加减乘除、矩阵变换等)。

  • 关键路口的路标 ➔ 需要计算梯度的张量(requires_grad=True)。

  • 普通直路 ➔ 不需要梯度的张量(requires_grad=False)。

梯度(Gradient) 就是告诉你:“为了更快找到宝藏,每一步该往哪个方向调整”

为什么要用 requires_grad

  1. 节省资源
    如果每个石头都要记录(比如 requires_grad=True),背包很快就满了(内存爆炸)。
    只标记关键路口(比如模型参数),就能轻装上阵!

  2. 明确目标
    你只想优化模型参数(比如迷宫的钥匙位置),而不是输入数据(比如入口位置)。
    所以:

    • 参数张量 ➔ requires_grad=True(需要梯度,方便反向传播调整)。

    • 输入数据 ➔ requires_grad=False(不需要调整输入)。

 举个例子:

import torch

# 假设这是迷宫的钥匙(需要优化的参数)
key = torch.tensor([1.0, 2.0], requires_grad=True)  # 关键路口,放路标!

# 这是迷宫的入口(输入数据,固定不变)
entrance = torch.tensor([3.0, 4.0], requires_grad=False)  # 普通直路,不用记

# 探索路径:钥匙和入口相互作用
path = key * 2 + entrance  # 这里会自动跟踪 key 的梯度!

# 计算损失(比如离宝藏的距离)
loss = path.sum()

# 反向传播:找出钥匙应该怎么调整!
loss.backward()

print("钥匙的梯度:", key.grad)  # 输出:tensor([2., 2.])
print("入口的梯度:", entrance.grad)  # 输出:None(没标记就不计算)

上面这段代码的含义就是:

key的梯度时[2.,2.],表示“钥匙往这个方向调整,能更快找到宝藏”

entrance:没有梯度,因为它只是起点,不需要优化。

那么什么时候需要将梯度置为true呢?有两点:

1.模型参数需要根据梯度调整

2.如果想研究某个中间步骤对结果的影响

什么时候置为false呢?

1.输入数据本身不需要被优化

2.省内存,加速等时候需要

总结:requires_grad=True 就是告诉 PyTorch:“这个张量很重要!请盯紧它,后面我要用它来反向传播,优化模型!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值