- 博客(833)
- 资源 (1)
- 收藏
- 关注
原创 光伏发电园区管理系统 - Three.js + Django 实现方案
我将设计一个基于Three.js和Django的光伏发电园区管理系统,包含3D可视化、实时监控和数据分析功能。API请求数据存储数据存储数据存储获取获取前端 - Three.jsDjango后端数据库外部API光伏设备数据气象数据发电数据实时天气电价信息技术栈与依赖前端:后端:其他依赖:2. 数据库模型设计 ()3. Django 视图与API ()4. Three.js 光伏园区可视化 ()5. 前端主界面 ()6. 前端主逻辑 ()系统功能亮点三维光伏园区可视化:实时
2025-07-05 11:18:16
1031
原创 Unity HDRP + Azure IoT 的 Python 后端实现与集成方案
高效数据处理:Python处理物联网数据流,实时同步到Unity沉浸式可视化:Unity HDRP实现高保真3D工业场景渲染智能分析:Python机器学习模型提供预测性维护自然交互:手势识别与AR技术实现直观控制该架构充分发挥了Python在数据处理和AI方面的优势,结合Unity在实时渲染和交互体验上的强大能力,为工业物联网提供了完整的数字孪生解决方案。
2025-07-04 23:08:16
1047
原创 物联网中的Unity/Unreal引擎集成:数字孪生与可视化控制
Unity和Unreal引擎在物联网领域的集成正在彻底改变工业监控、智慧城市和产品设计等领域的可视化交互方式。
2025-07-04 22:55:14
908
原创 物联网数据安全区块链服务
下面是一个专为物联网数据安全设计的区块链服务实现,使用Python编写并封装为RESTful API。该服务确保物联网设备数据的不可篡改性、可追溯性和安全性。
2025-07-04 22:42:16
1415
原创 Python区块链服务及API实现
下面我将创建一个完整的区块链服务,并使用Flask封装为RESTful API接口。这个实现包含区块链核心功能、工作量证明机制、交易处理、节点共识和网络同步等功能。
2025-07-04 22:36:39
627
原创 区块链技术核心组件及应用架构的全面解析
公有链场景需代币经济 → 选EVM链(Polygon)高频交易 → 选Solana/Aptos企业应用多组织协作 → Hyperledger Fabric高吞吐需求 → R3 Corda物联网集成轻量级设备 → IOTA Tangle数据密集型 → Hedera Hashgraph据IEEE测算,2025年联盟链性能将突破200,000 TPS,零知识证明可使隐私计算开销降低90%。技术选型需权衡去中心化程度、合规要求及业务场景,避免“为区块链而区块链”。
2025-07-04 22:33:04
743
原创 区块链技术在物联网(IoT)中的核心应用场景
区块链为物联网提供了“信任自动化”工业场景:通过设备数据确权激活工业互联网数据市场消费领域:保障智能家居数据隐私(如Apple HomeKit+区块链)智慧城市:实现路灯/电网等公共设施自治协同据Gartner预测,到2027年30%的物联网项目将集成区块链,重点解决数据资产化与跨组织协作问题。开发者应关注轻量级共识算法(如IOTA的PoW替代方案)和ZK-Rollups等扩容技术。
2025-07-04 22:30:03
1035
原创 本地区块链服务在物联网中的应用实例
fill:#333;color:#333;color:#333;fill:none;加密数据物联网设备区块链网关本地区块链网络数据查询接口监控仪表盘智能合约告警系统。
2025-07-04 22:23:40
951
原创 本地搭建区块链服务的详细指南
创建},"alloc": {"0xYourAddress": { "balance": "1000000000000000000000" } // 初始分配ETHganache --wallet.accounts 0x私钥,1000000000000000000000 --database.dbPath ./chaindata。
2025-07-04 22:19:36
647
原创 基于区块链的物联网(IoT)安全通信与数据共享的典型实例
设备身份可信每个传感器绑定唯一区块链ID(类似数字护照)端到端加密数据从设备到存储全程加密(TEE+ECC+IPFS)零信任验证智能合约自动校验数据逻辑(如温度骤变是否合理)审计友好监管部门(如FDA)可通过公开接口验证全链路数据💡行业扩展:同类方案适用于电力物联网(智能电表)、车联网(自动驾驶数据共享)、工业4.0(生产线设备协同)等场景,核心解决跨组织设备间的可信协作问题。
2025-07-04 22:15:32
1020
原创 可信数据空间:概念、架构与应用实践
可信数据空间通过“技术+制度”双轮驱动,破解数据共享中的“安全与效率”矛盾,是数据要素市场化的核心基础设施。企业可结合自身场景,优先从数据流通刚需场景入手,逐步构建符合业务需求的可信数据生态。
2025-07-01 17:03:41
707
原创 政策文件解读
以中国数联为技术枢纽,各省交通厅牵头成立专项组,优先在30个综合货运枢纽城市(政策名单)试点,资金申请国家发改委“交通强国建设专项基金”。基于三份文件内容,我整合出以下。
2025-06-30 12:38:04
500
原创 项目立项主要内容及实例
在[具体结束日期]前,完成智能仓储管理系统的升级,实现仓储作业的自动化、信息化和智能化,提高仓储管理效率和准确性,降低运营成本。具体目标:将总体目标分解为具体的、可操作的目标,如提高产品质量、降低成本、增加销售额等,并明确相应的指标和时间节点。交付成果:列出项目完成后需要交付的具体成果,如产品、报告、系统、文档等,并对每个交付成果进行简要说明。资源需求:明确项目所需的人力、物力、财力等资源,包括人员数量、技能要求、设备清单、预算金额等。
2025-06-25 21:13:26
296
原创 项目章程主要内容格式
本文件正式授权[项目经理姓名]作为本项目的项目经理,负责项目的整体规划、执行、监控和收尾工作,代表项目发起人进行决策和协调工作。约束条件:限制项目团队在项目执行过程中选择方案的因素,如预算限制、时间限制、资源限制、法律法规要求等。主要相关方:识别对项目有重要影响或受项目影响较大的个人或组织,包括客户、供应商、团队成员、高层领导等。本项目涵盖新产品的需求分析、设计、开发、测试、上线等全过程,但不包括产品的长期运营和维护工作。项目范围概述:简要描述项目涵盖的工作内容和不包含的内容,界定项目的边界。
2025-06-25 21:10:45
486
原创 项目经理管理项目的关键节点
关键点:识别项目可能面临的各种风险,如技术风险、市场风险、人员风险等,并评估其发生的可能性和影响程度。关键点:在项目验收完成后,解散项目团队,释放项目所占用的资源。示例:对于一个软件开发项目,需要招募程序员、测试人员、设计师等不同专业背景的人员,并为他们分配具体的开发、测试、设计任务。流程:变更请求提出后,需要评估变更对项目目标、进度、成本等方面的影响,经过相关利益相关者的审批后,才能实施变更。利益相关者分析:识别项目的利益相关者,如客户、高层领导、团队成员等,了解他们的需求和期望,制定针对性的沟通计划。
2025-06-25 17:41:20
301
原创 LangGraph Core 深度使用指南
构建下一代语言智能系统的核心引擎LangGraph Core 是一个革命性的语言图处理框架,通过将与深度融合,实现复杂语言任务的建模与执行。
2025-06-22 17:40:00
1099
原创 LangServer 与 Langgraph 融合架构:构建智能语言服务系统
通过LangServer与Langgraph的融合,可构建响应速度提升3倍、准确率提高40%的新一代语言智能平台,为开发者提供语义级智能辅助。建议采用开源核心+商业扩展模式推进生态建设。LangServer(语言服务器协议)与 Langgraph(语言图模型)的结合将创造新一代智能语言处理平台,实现从底层语言理解到高层应用服务的全链路增强。LangServer 接口服务。Langgraph 语义理解。LangServer接口。Langgraph引擎。Langgraph解析。带领域知识的补全建议。
2025-06-21 15:08:55
1338
原创 可信数据空间:构建下一代数据共享基础设施
可信数据空间(Trusted Data Spaces)是数据经济时代的关键基础设施,通过技术+规则双轮驱动,实现数据在保护主权前提下的安全流通和价值释放。可信数据空间将成为数字经济的“输油管道”,预计到2025年全球市场规模达$280亿(麦肯锡数据)。三步走战略抢占生态位。
2025-06-21 14:56:21
45
原创 LangServe 使用指南与实例详解
chain.py# 翻译链translate_template = """将以下文本从{source_lang}翻译为{target_lang}:\n{text}"""# 摘要链summarize_template = """为以下文本生成摘要:\n{translated_text}"""# 组合链# app.py# 添加多个路由点# 创建自定义序列化器return BaseModel # 使用默认输入模式return CustomResponse # 自定义输出模式。
2025-06-19 18:41:16
974
原创 LangSmith Agent测试监控方案实现路径
创建监控仪表盘panels=["name": "响应延迟",},"name": "准确率矩阵","""检查响应是否包含品牌敏感词"""PROHIBITED_TERMS = ["竞争对手", "负面词汇", "敏感政治术语"]return {# 注册自定义评估器description="品牌安全合规性检查"
2025-06-19 18:37:30
1339
原创 LangSmith 深度解析:构建企业级LLM应用的全生命周期平台
可观测性挑战通过细粒度追踪实现黑盒透明化质量保障挑战构建持续评估验证体系生产运维挑战提供企业级监控告警能力合规审计挑战满足金融/医疗等严格合规要求实施价值开发效率提升40%生产事故减少70%模型迭代速度提升3倍合规审计成本降低90%“LangSmith 不是简单的监控工具,而是LLM应用的全生命周期操作系统 —— 它让AI应用的迭代从艺术变为工程”
2025-06-17 19:29:08
1031
原创 LangSmith 的示例,展示如何通过SDK 调试和监控一个简单的 LLM 应用
退款物流商品推荐用户问题:{question}分类结果:"""根据用户问题和分类结果,生成回答:分类:{category}用户问题:{question}回答:"""# 分类问题# 生成响应# 模拟外部工具调用(例如搜索)if category_result == "商品推荐":search_results = search.run(f"推荐 {question.split()[-1]} 相关商品")
2025-06-16 17:23:40
417
原创 LangGraph 深度测试指南:端到端与节点级测试策略
服务水平目标latency:p99: 2.5smax: 5s分层测试策略节点级:100%单元测试覆盖 + 性能基准工作流级:关键路径100%覆盖 + 异常流覆盖系统级:真实场景模拟 + 混沌测试测试数据管理# 测试数据版本控制metadata={生产近似的测试环境使用相同版本的LLM模型数据库负载模拟网络延迟注入自动化覆盖率提升# 自动生成边界测试持续监控测试有效性# 跟踪测试捕获的生产缺陷})节点级可靠性:99.99%无缺陷执行工作流完整性。
2025-06-16 10:00:00
924
原创 LangGraph AI 系统测试与高可用保障体系
分层测试策略:70%单元测试 + 20%集成测试 + 10%端到端测试真实故障模拟:每月执行混沌工程测试性能持续监测:建立性能基准库,阻止性能退化多级回滚机制自动回滚:当错误率 > 5%手动回滚:关键业务功能异常数据回滚:状态数据版本控制容量规划:# 自动伸缩规则99.95%可用性:全年停机时间 < 4.38小时故障恢复:RTO < 5分钟,RPO < 1分钟性能保障:P99延迟 < 2秒 99%的时段关键洞察:LangGraph系统的可靠性不是通过避免故障实现,而是通过。
2025-06-15 16:42:45
1166
原创 LangGraph 深度应用指南:构建下一代Agent系统
状态驱动:维护跨节点的上下文灵活路由:实现复杂决策逻辑循环支持:处理迭代式任务多Agent协同:构建智能团队实战建议从简单工作流开始,逐步增加复杂度使用检查点机制处理长时工作流为关键节点添加人工审核环节实施全面的监控和错误处理利用LangSmith进行持续优化“LangGraph 不是另一个工作流引擎,而是AI应用的神经系统——它使智能体能够像生物系统一样感知、思考和行动。
2025-06-15 16:35:38
992
原创 LangServe 完整使用指南:部署LangChain应用到生产环境
fill:#333;color:#333;color:#333;fill:none;LangChain应用LangServe封装REST API客户端调用自动文档监控集成topic: strstyle: str = "专业"app,
2025-06-13 18:49:08
1190
原创 Django框架认证系统默认在登录成功后尝试重定向到/accounts/profile/
views.py# 自定义重定向逻辑return reverse_lazy('dashboard') # 替换为你的首页URL# urls.py。
2025-06-12 14:03:02
256
原创 Langfuse 深度使用指南:构建可观测的LLM应用系统
Langfuse 是专为大语言模型(LLM)应用设计的开源可观测性平台,提供全链路追踪、分析调试和成本管理功能。
2025-06-11 19:53:14
1286
原创 基于LangGraph的Agent测试方案与过程
单元测试 测试Agent的独立模块(如意图识别、回复生成) pytest(Python)、unittest。集成测试 测试Agent与外部系统(如数据库、API)的交互 Postman、自定义Mock服务。安全加固:安全测试确保Agent能抵御常见攻击(如SQL注入、敏感信息泄露)。功能覆盖:通过单元测试、集成测试和端到端测试,确保Agent的核心功能稳定。鲁棒性测试:验证Agent对异常输入(如乱码、无意义问题)的处理能力。场景化覆盖:模拟真实业务场景(如客服、知识问答)的对话流程。
2025-06-10 15:07:56
668
原创 AI 维护工具之 Langfuse:深度解析与应用场景
Langfuse 是一个专为 AI 应用(尤其是基于 LLM 的系统) 设计的可观测性(Observability)与维护工具,旨在帮助开发者监控、调试和优化 AI 应用的性能、成本和用户体验。Langfuse 请求追踪、性能监控、成本分析 LLM 应用、AI 工具链 专注 AI 场景,深度集成 LLM 需集成 SDK,学习成本较高。请求追踪(Request Tracing):记录 AI 应用的每一次请求(如 LLM 调用、工具链执行)的输入、输出和上下文。
2025-06-10 09:15:00
917
原创 借助 LangGraph 对 Agent 进行测试
LangGraph 的状态流(Stateful Flow)特性使其成为测试复杂 Agent 系统的理想工具,尤其适用于需要模拟多轮交互、上下文依赖或动态决策的场景。流程控制:用节点(Node)和边(Edge)模拟 Agent 的行为路径,支持条件分支。包含 Agent 的内部状态(如记忆、知识库)和测试环境状态(如历史对话、用户画像)。状态管理:通过 State 对象跟踪 Agent 的内部状态(如记忆、知识库)。动态决策:Agent 的行为需根据状态变化(如用户输入、环境反馈)动态调整。
2025-06-09 17:48:18
390
原创 LangGraph 应用实例解析
LangGraph 是基于状态流(Stateful Flow)的框架,专为构建复杂、多轮对话或动态交互的 LLM(大语言模型)应用设计。它通过节点(Node)和边(Edge)的图形化结构,将对话逻辑拆解为可复用的组件,支持动态状态跟踪、上下文记忆和条件分支,适用于需要长期上下文依赖或复杂决策流程的场景。玩家属性(生命值、物品)、NPC状态(好感度、剧情进度)存储在 State 中。节点内部调用LLM API(如OpenAI)生成动态内容(如对话、报告)。
2025-06-09 17:44:31
676
可用指标 提供以下与 Tomcat 相关的指标: 线程池指标 会话指标 请求处理器指标 数据库连接池指标 Tomcat 版本信
2024-11-18
Prometheus 监控tomcat的运行情况
2024-11-18
格式化输出双String类类型的json格式字符串
2023-12-20
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人