数据分析-----------numpy 学习

本文详细探讨了numpy库在数据分析中的核心作用,包括数组操作、矩阵运算以及统计函数等关键功能。通过实例解析,展示了numpy如何为深度学习和机器学习提供强大的数值计算支持,并进一步阐述了numpy与python的无缝集成,提升数据分析效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import  numpy as nu
n1=nu.array([0,2,5,6,8])

n2=nu.arange(5)
# print(n1*2+n2*4)
# print(n1[2:])
print(n1.max())
print(n1.min())
print(n1.sum())

a = nu.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21, 22, 23, 24, 25],
              [26, 27, 28 ,29, 30],
              [31, 32, 33, 34, 35]])

print(a[2,4])

 

import  numpy.matlib

a=numpy.arange(15).reshape(3,5)
print(a)
print(a.sum(axis=0))
print(a.sum(axis=1))
print(a.cumsum(axis=1))
print(numpy.exp(a))
print(numpy.sqrt(a))
print(a.T.shape)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小赖同学啊

感谢上帝的投喂

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值