Stable Diffusion里的IP-Adapter, 图片风格迁移原来是这样用的。

前段时间腾讯发布的ControlNet新模型叫“IP-Adapter”,它的作用就是把上传的图像转化为图像提示词,简单的来说就是跟Midjourney的垫图功能差不多。

在这里插入图片描述

IP-Adapter能够精准地识别参考图的风格特征,并且可以很好的适配其他的模型以及ControlNet模型。

它还可以让图像提示词和文本提示词一起使用。

01.模型下载

在使用“IP-Adapter”之前,需要将自己的ControlNet更新到最新版本并且需要下载相关模型:

_WebUI模型下载

_ComfyUI模型下载

(注意需要的同学可以文末自行扫描获取)

“IP-Adapter”不仅仅支持SD1.5模型还支持SDXL模型,通过以上的链接根据自己的需求下载对应的模型即可。

(SD1.5建议下载“ip_adapter_sd15_plus.pth”)

2.风格迁移

1. 首先打开“Stable Diffusion”,上传一张参考图,然后“启用ControlNet”并且勾选“完美像素模式”。

2. 控制类型选择“IP-Adapter”,模型选择“ip_adapter_sd15_plus.pth”也可以选择“ip_adapter_sd15.pth”模型。

3. 设置完ControlNet之后,选择一个模型,提示词可以简单的写一些,也可以不写。

4. 根据自己的需求设置生成参数。尺寸建议跟参考图保持一样。

5. 设置完以上的参数之后,点击“生成”即可。

我们可以看到,原图的风格、色调、服装等等很好的迁移到了另一张图上。此外,这里还可以在“ControlNet Unit 1”上传另一张图片,然后会把“ControlNet Unit 0”的图片风格迁移到“ControlNet Unit 1”的图片上。可以尝试按以下的操作:

1. 在“ControlNet Unit 1”上传另一张图片,然后点击“启用”并且勾选“完美像素模式”。

2. 控制类型选择“Canny”,然后预处理器以及模型会默认给我们选上,其他的参数保持默认即可。

3. 设置好以上的参数后,点击“生成”即可。(前面的参数以及设置不变)。

我们可以看到“ControlNet Unit 0”的图片风格、色调、服装等等,很好的迁移到了“ControlNet Unit 1”上。

3.姿势控制

1. 首先打开“Stable Diffusion”,在“ControlNet Unit 0”上传一张参考图,然后“启用”ControlNet并且勾选“完美像素模式”。

2. 控制类型选择“IP-Adapter”,模型选择“ip_adapter_sd15_plus.pth”也可以选择“ip_adapter_sd15.pth”模型。

3. 点击“ControlNet Unit 1”上传一张姿势参考图,然后“启用”ControlNet并且勾选“完美像素模式”。

4. 控制类型选择“OpenPose”,预处理器选择“OpenPose_full”。

5. 设置完ControlNet之后,选择一个模型,提示词可以简单的写一些,也可以不写。

6. 根据自己的需求设置生成参数。尺寸建议跟参考图保持一样。

7. 设置完以上的参数之后,点击“生成”即可。

4.报错

如果遇到报错,无法使用IP-Adapter:

“sd-webui\extensions\sd-webui-controlnet\annotator\downloads\clip_vision\ ”检查目录里有没有这两个模型:“clip_g.pth”和“clip_h.pth”,如果没有可以从文末下载这两个模型然后放到对应的文件夹即可。

5.总结

IP-Adapter不仅仅可以用在照片上,还可以用在平面设计、室内设计、服装设计等等,来帮助我们实现更加多样化的创意,可以用到它的地方很多,至于还可以用到什么地方,这需要我们不断的尝试和探索,一旦掌握得当,它可以很好的提高我们的工作效率,并为我们带来无限的可能性。

资料软件免费放送

次日同一发放请耐心等待

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

需要的可以扫描下方CSDN官方认证二维码免费领取【保证100%免费】

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

在这里插入图片描述

### Stable Diffusion IP-Adapter 的使用方法及教程 #### 一、IP-Adapter 功能概述 IP-Adapter 是一种轻量级适配器,旨在增强预训练文本到图像扩散模型的图像提示能力。它可以通过上传参考图像将其转换为图像提示词,从而实现精确的风格迁移效果[^2]。 #### 二、安装与配置环境 为了使用 IP-Adapter,需先搭建好 Stable Diffusion WebUI 环境并加载 ControlNet 插件。以下是具体操作说明: 1. **下载依赖文件** - 下载 `ip-adapter` 模型权重文件(如 ip-adapter_sd15.pth 或其他变体),这些文件通常可以在开源社区获取[^3]。 2. **放置模型文件** 将下载好的 `.pth` 文件放入指定路径下,例如 `models/controlnet/` 目录中[^4]。 3. **启用插件支持** 在启动脚本中确保启用了 ControlNet 支持,并确认其版本兼容最新发布的 IP-Adapter 版本[^5]。 #### 三、实际应用流程 以下是基于 Stable Diffusion WebUI 实现图片风格迁移的具体步骤: 1. **选择模式** 进入界面后,在生成选项卡中切换至“文生图”模式。 2. **调整参数** 配置 ControlNet 单元中的相关参数: - 设置模块类型为 `ip-adapter`; - 调整权重比例以平衡输入图像的影响程度; - 如果仅关注面部特征,则可选用专门优化的人脸子集模型 `ip-adapter-plus-face_sd15`。 3. **提供参考素材** 提供一张或多张作为样式的参考图片,系统会自动提取其中的关键视觉特性。 4. **执行渲染过程** 填写描述性的文字指令配合上述设定完成最终作品创作。 ```python from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler import torch model_id = "runwayml/stable-diffusion-v1-5" scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler).to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] # Save the image to disk. image.save("./astronaut_rides_horse.png") ``` 以上代码片段展示了如何利用官方库构建基础管道结构来调用 SD API 接口[^1]。 --- #### 四、优势特点总结 相比传统方式,采用 IP-Adapter 可带来如下益处: - 更加灵活可控的结果表现力; - 显著降低手动编写复杂 prompt 所需时间成本; - 对特定领域比如动漫化处理具备独特专精性能。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值