CompressAI 模型参数配置学习笔记

本文介绍了CompressAI框架中用于训练神经网络模型的参数,包括模型选择(-m)如bmshj2018_factorized,训练时期(-epochs)的默认值为100,以及学习率(-learning-rate)的默认值1e-4。其他关键参数包括lambda值,batch-size,test-batch-size,patch-size,cuda使用和模型保存选项。训练时采用的损失函数也在文中提及。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CompressAI 自己训练网络的参数设置

  • -m

模型设置,通过 -m 选择要用来训练的模型,默认为 "bmshj2018_factorized",CompressAI 包含的所有模型如下列表所示:

__all__ = [
    "bmshj2018_factorized",
    "bmshj2018_factorized_relu",
    "bmshj2018_hyperprior",
    "mbt2018",
    "mbt2018_mean",
    "cheng2020_anchor",
    "cheng2020_attn",
    "pre_mbt2018"           # 自己加的结合前处理网络的 mbt2018
]
  • –epochs

时期,表示在训练集上训练多少次,一个Epoch就是将所有训练样本训练一次的过程。官方默认 100

  • –lambda

该表格为 CompressAI 在训练端到端编码器的时候使用的 lambda 值,作用相当于大致确定一个码率点,默认值为1e-2

lambda

  • –learning-rate

学习率,越大学习梯度越快,默认为 1e-4

  • –batch-size

每一次训练选取的输入数量,CompressAI 官方训练端到端 Codec 的值为 16 / 32

  • –test-batch-size

同 --batch-size 的作用,不过此处是训练输入的选取,官方默认值为 64

  • –patch-size

补丁大小,意为每次操作的时候选取的块的大小,官方默认值为 (256, 256)

  • –cuda

开关打开后,使用 cuda 进行训练,即 GPU

  • –save

开关打开后,会实时保存训练好的模型,保存的地址为 examples\checkpoint.pth.tar 以及 examples\checkpoint_best_loss.pth.tar,一个是每次训练都会保存,一个是只有loss小于之前的最小值才会保存。

  • Loss-Function

训练时使用的损失函数表达式如下所示:

Loss

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值