
机器学习与深度学习算法
文章平均质量分 81
零基础入门人工智能,深度解析机器学习与深度学习的重要算法
TheJustice_
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
随机森林的知识博客:原理与应用
随机森林作为一种强大的集成学习算法,具有优异的分类和回归能力。其通过集成多棵决策树并引入随机性,成功解决了单棵决策树容易过拟合的问题。随机森林不仅能够处理复杂的高维数据,还可以用于特征选择和异常检测等任务。虽然训练过程可能相对耗时,但其鲁棒性和强大的泛化能力使得它在实际应用中非常受欢迎。在使用随机森林时,合理的参数调优能够进一步提升模型性能,使其在各种实际任务中表现更加出色。无论是分类任务还是回归任务,随机森林都是一个非常实用且有效的选择。原创 2024-09-06 16:23:38 · 1100 阅读 · 0 评论 -
损失函数的知识博客:原理、类型与应用
损失函数在机器学习和深度学习中扮演着至关重要的角色,直接影响模型的学习效果和预测性能。本文介绍了损失函数的基本原理、常见类型以及在回归和分类任务中的具体应用。掌握损失函数的选择和使用技巧,能够帮助开发者更好地训练模型,并最终提高模型的准确性与鲁棒性。在实践中,结合任务的具体需求和数据特征选择合适的损失函数,是优化模型效果的关键一步。原创 2024-09-06 16:07:04 · 1796 阅读 · 0 评论 -
监督学习、半监督学习和无监督学习
学习范式数据需求应用场景代表算法优缺点监督学习大量标注数据分类、回归问题线性回归、决策树、神经网络预测准确,但依赖大量标注数据半监督学习少量标注数据和大量未标注数据文本分类、图像识别一致性正则化、伪标签、GAN减少标注数据需求,未标注数据质量影响大无监督学习未标注数据聚类、异常检测、降维K-Means、PCA、自编码器无需标注数据,效果难评估在实际应用中,选择哪种学习范式取决于任务的具体需求和数据集的特性。原创 2024-09-06 15:55:10 · 1334 阅读 · 0 评论 -
深入QLora大模型微调:原理与实践
由于QLora是一个虚构的模型,我将提供一个基于真实存在的预训练模型BERT的微调示例,使用Python和Hugging Face的Transformers库。QLora模型的微调是一个涉及多个步骤的复杂过程,但通过合理的策略和细致的调整,可以显著提升模型在特定任务上的表现。它通过减少自注意力层中的Query数量,降低了模型的参数量和计算成本,同时通过特殊的权重分配策略,保持了对关键信息的捕捉能力。根据任务的特点选择合适的损失函数,如交叉熵损失、序列损失等,以指导模型在微调过程中的学习方向。原创 2024-07-16 19:00:05 · 1823 阅读 · 0 评论 -
BERT架构的深入解析
BERT通过其双向Transformer编码器和预训练策略,在各种NLP任务中取得了卓越的性能。其成功不仅展示了预训练模型的强大能力,也为NLP研究和应用带来了新的方向和思路。随着研究的深入和技术的进步,BERT及其变种将在更多的应用场景中展现出其强大的潜力和价值。原创 2024-07-15 15:54:14 · 879 阅读 · 0 评论 -
Transformer架构的深入解析
Transformer架构主要由编码器(Encoder)和解码器(Decoder)两部分组成,每部分又包含多个相同的层。每一层包含两大核心组件:多头自注意力机制(Multi-Head Self-Attention)和前馈神经网络(Feed-Forward Neural Network)。Transformer架构通过其创新的自注意力机制和并行计算能力,解决了传统RNN和LSTM模型在处理长序列时的瓶颈,成为了现代NLP领域的主流方法。其在各种NLP任务中的优异表现,充分展示了其强大的能力和广泛的应用前景。原创 2024-07-15 12:29:20 · 1105 阅读 · 0 评论 -
自然语言处理技术的发展过程
自然语言处理技术的发展历程展示了从规则驱动到统计模型,再到深度学习和预训练模型的演变过程。每一个阶段的技术进步都为NLP领域带来了新的可能性,使得计算机能够更加智能地理解和处理人类语言。未来,随着计算能力的进一步提升和新技术的不断涌现,NLP技术必将在更多应用场景中展现出其强大的潜力和价值。原创 2024-07-15 12:24:00 · 1392 阅读 · 0 评论 -
Actor-Critic 算法
Actor-Critic 算法通过结合策略梯度和价值评估,提供了一种高效、稳定的策略优化方法。它在处理复杂环境和大规模问题时表现出色。理解和实现 Actor-Critic 算法不仅能够帮助我们在强化学习领域中取得更好的成绩,还能为解决实际问题提供有力工具。原创 2024-07-10 13:54:30 · 716 阅读 · 0 评论 -
强化学习中的蒙特卡洛算法和时序差分算法
蒙特卡洛方法和时序差分方法各有优缺点,在不同的应用场景下可以互为补充。蒙特卡洛方法通过完全序列的回报估计状态值,适用于离线处理;时序差分方法通过每一步的即时回报和估计值更新状态值,适合在线学习和实时更新。在实际应用中,可以根据具体需求选择合适的方法,甚至可以结合使用,以达到最优的价值估计效果。原创 2024-07-10 13:46:51 · 1333 阅读 · 0 评论 -
了解PPO算法(Proximal Policy Optimization)
PPO 算法通过引入裁剪机制和信赖域约束,限制了策略更新的幅度,提高了训练过程的稳定性和效率。其简单而有效的特性使其成为目前强化学习中最流行的算法之一。通过理解并实现 PPO 算法,可以更好地应用于各种强化学习任务,提升模型的性能。%5Cepsilon。原创 2024-07-09 20:54:09 · 1962 阅读 · 0 评论 -
了解Adam和RMSprop优化算法
RMSprop和Adam都是深度学习中常用的优化算法,各自有其优势。RMSprop通过调整每个参数的学习率来处理非平稳目标,而Adam则结合了动量和均方根的思想,使得它在处理稀疏梯度和非平稳目标时表现优异。理解并灵活运用这些优化算法,将有助于提高模型训练的效率和效果。原创 2024-07-09 20:43:53 · 1611 阅读 · 0 评论 -
深入理解策略梯度算法
通过以上步骤,我们实现了一个基本的策略梯度算法。策略梯度方法通过直接优化策略来最大化智能体的期望回报,具有理论上的简洁性和实用性。本文详细推导了策略梯度的数学公式,并提供了具体的实现步骤,希望能够帮助读者更好地理解和应用这一重要的强化学习算法。原创 2024-06-30 10:57:41 · 2524 阅读 · 0 评论 -
压缩映射定理证明
收缩映射定理(又称Banach不动点定理)是一个重要的结果,特别是在分析和应用数学中。:假设是一个从度量空间 (X,d) 到自身的函数,如果是一个收缩映射,即存在常数,使得对于所有,有,那么有唯一的不动点,即。此外,对于任何初始点,迭代序列都收敛于,且收敛速度是指数级的。原创 2024-06-17 13:02:36 · 1407 阅读 · 0 评论 -
深度学习中的卷积算子优化与GPU加速
/ 共享内存用于存储输入和卷积核的局部块// 加载输入数据到共享内存++kh) {++kw) {GPU加速和算子优化在深度学习中至关重要。通过使用高效库、混合精度训练、并行计算策略、操作融合、自定义CUDA内核等方法,可以显著提高深度学习模型的训练和推理速度。这些优化技术不仅提升了计算效率,还增强了模型在实际应用中的性能和可扩展性。原创 2024-06-11 14:48:46 · 2327 阅读 · 0 评论