IP地址与子网掩码做逐位与运算

本文介绍了在简单路由器程序中,如何通过两种方法实现IP数据报的目的IP地址与子网掩码的逐位与运算。一种方法是通过移位操作实现,另一种方法则是利用bitset类来简化这一过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在写简单路由器程序的时候,需要将捕获的IP数据报中的目的IP地址与每一个路由表项中的子网掩码作逐位与运算再与对应的目的IP地址作比较。

作逐位与运算有两种比较简单的方式

1. 移位


unsigned long IPandMask(unsigned long ul_ip, unsigned long ul_mask){
    unsigned long result = 0;
    for (int i = 31; i >= 0; i--)
    {
        result = (result << 1) + (((ul_ip >> i) & 1) & ((ul_mask >> i) & 1));
    }
    return result;
}

2. 使用bitset

#include <bitset>
unsigned long IPandMask(unsigned long ul_ip, unsigned long ul_mask){
    bitset<32> ip(ul_ip);
    bitset<32> mask(ul_mask);
    bitset<32> result;
    result = ip & mask;
    return result.to_ulong();
}
内容概要:本文详细比较了GPU、TPU专用AI芯片在大模型推理优化方面的性能、成本及适用场景。GPU以其强大的并行计算能力和高带宽显存,适用于多种类型的神经网络模型和计算任务,尤其适合快速原型开发和边缘计算设备。TPU专为机器学习设计,擅长处理大规模矩阵运算密集型任务,如Transformer模型的推理,具有高吞吐量和低延迟特性,适用于自然语言处理和大规模数据中心的推理任务。专用AI芯片通过高度定制化架构,针对特定神经网络模型进行优化,如卷积神经网络(CNN),在处理特定任务时表现出色,同时具备低功耗和高能效比的优势,适用于边缘计算设备。文章还介绍了各自的优化工具和框架,如CUDA、TensorRT、TPU编译器等,并从硬件成本、运营成本和开发成本三个角度进行了成本对比。 适合人群:从事人工智能、深度学习领域的研究人员和技术人员,尤其是对大模型推理优化感兴趣的读者。 使用场景及目标:①帮助读者理解GPU、TPU和专用AI芯片在大模型推理中的优缺点;②为选择适合的硬件平台提供参考依据,以实现最优的推理性能和成本效益;③介绍各种优化工具和框架,帮助开发者高效部署和优化模型。 其他说明:本文不仅涵盖了硬件架构特性,还深入探讨了优化技术和应用场景,旨在为读者提供全面的技术参考。在选择硬件平台时,需综合考虑具体任务需求、预算限制及开发资源等因素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值