1.降维技术
在日常处理数据的时候,数据往往是好多维的,也就是一条数据往往有好多个特征,导致数据处理和分析起来比较麻烦,但是这些特征绝大部分都是非主要的,对数据的处理分析过程起到的作用特别少,但是却大大增加了数据处理的复杂度,所以我们就需要对数据进行降维处理,将多维度的数据减低到适当的低维度,从而达到对数据进行简化的目的。对数据进行简化有如下好处:
- 使得数据集更易于使用;
- 降低很多算法的计算开销;
- 去除噪声;
- 使得结果更易懂。
常用的降维技术有:主成分分析(Principal Component Analysis, PCA)、因子分析(Factor Analysis)、独立成分分析(Independent Componenet Analysis,ICA)我们这篇文章主要介绍PCA。
注意:
我个人是这样理解降维的:所谓的降维,并不是说去掉一些特征,保留一些主要的特征值,然后达到简化数据的目的,而是将数据矩阵按照一定的矩阵变换方式,变换到更低维度的数据形式。变换的方式就是保留原数据矩阵主要的变换方向,这些主要的变换方向决定了原始数据大部分的变化形式,如90%,而这些主要的变换方向可能只占所有变换方向的10%,甚至更少。假设原来是100维,主要的变化方向是10维,那么我们只取这10维