PCA算法来简化数据

PCA(主成分分析)是一种常见的降维技术,用于简化多维数据。通过保留主要的特征值和特征向量,PCA可以降低计算复杂度,去除噪声,并使结果更易理解。降维过程中,并非直接去除特征,而是通过线性变换找到数据的主要变化方向,以较低维度表示数据。PCA算法包括计算平均值、协方差矩阵、特征值和特征向量,然后将数据转换到由最大特征值对应的特征向量定义的新空间中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.降维技术

        在日常处理数据的时候,数据往往是好多维的,也就是一条数据往往有好多个特征,导致数据处理和分析起来比较麻烦,但是这些特征绝大部分都是非主要的,对数据的处理分析过程起到的作用特别少,但是却大大增加了数据处理的复杂度,所以我们就需要对数据进行降维处理,将多维度的数据减低到适当的低维度,从而达到对数据进行简化的目的。对数据进行简化有如下好处:

  1. 使得数据集更易于使用;
  2. 降低很多算法的计算开销;
  3. 去除噪声;
  4. 使得结果更易懂。

        常用的降维技术有:主成分分析(Principal Component Analysis, PCA)、因子分析(Factor Analysis)、独立成分分析(Independent Componenet Analysis,ICA)我们这篇文章主要介绍PCA。

注意:

        我个人是这样理解降维的:所谓的降维,并不是说去掉一些特征,保留一些主要的特征值,然后达到简化数据的目的,而是将数据矩阵按照一定的矩阵变换方式,变换到更低维度的数据形式。变换的方式就是保留原数据矩阵主要的变换方向,这些主要的变换方向决定了原始数据大部分的变化形式,如90%,而这些主要的变换方向可能只占所有变换方向的10%,甚至更少。假设原来是100维,主要的变化方向是10维,那么我们只取这10维

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值