0 前言
昨天做题发现对排序算法说懂又很模糊,说不懂又知道。所以今天强化下记忆。
1 类别
从上图可以看出主要分两大类:
非线性时间比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此称为非线性时间比较类排序。
线性时间非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此称为线性时间非比较类排序。
因此本文也按照上面分类来一一描述经典的分类算法
2 交换排序
2.1 冒泡排序
冒泡排序重复走访要排序的数列,一次比较两个元素,如果顺序出错就交换。知道没有再需要交换为止。
算法描述:
- 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
- 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
- 针对所有的元素重复以上的步骤,除了最后一个;
- 重复步骤1~3,直到排序完成。
图示:
代码实现(python):
L=[10,7,5,2,8,3]
def bubble_sort(L):
count=len(L)
for i in range(0,count):
for j in range(i+1,count):
if L[i]>L[j]:
L[i],L[j]=L[j],L[i]
return L
print(bubble_sort(L))
2.2 快速排序
基本思想:分而治之,选取一个记录作为枢轴,经过一趟排序,将整段序列分为两个部分,其中一部分的值都小于枢轴,另一部分都大于枢轴。然后继续对这两部分继续进行排序,从而使整个序列达到有序。
算法描述:
- 从数列中挑出一个元素,称为 “基准”(pivot);
- 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
- 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
图示:
代码实现(python):
def QuickSort(myList,start,end):
#判断low是否小于high,如果为false,直接返回
if start < end:
i,j = start,end
#设置基准数
base = myList[i]
while i < j:
#如果列表后边的数,比基准数大或相等,则前移一位直到有比基准数小的数出现
while (i < j) and (myList[j] >= base):
j = j - 1
#如找到,则把第j个元素赋值给第个元素i,此时表中i,j个元素相等
myList[i] = myList[j]
#同样的方式比较前半区
while (i < j) and (myList[i] <= base):
i = i + 1
myList[j] = myList[i]
#做完第一轮比较之后,列表被分成了两个半区,并且i=j,需要将这个数设置回base
myList[i] = base
#递归前后半区
QuickSort(myList, start, i - 1)
QuickSort(myList, j + 1, end)
return myList
myList = [49,38,65,97,76,13,27,49]
print("Quick Sort: ")
QuickSort(myList,0,len(myList)-1)
print(myList)
3 插入排序
3.1 直接插入排序
通过构建有序序列,对于未排序数据,在已排序序列从后向前扫描,找到相应的位置插入
算法描述:
- 从第一个元素开始,该元素可以认为已经被排序;
- 取出下一个元素,在已经排序的元素序列中从后向前扫描;
- 如果该元素(已排序)大于新元素,将该元素移到下一位置;
- 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
- 将新元素插入到该位置后;
- 重复步骤2~5。
图示:
代码实现(python):
def insertSort(arr):
length = len(arr)
for i in range(1,length):
x = arr[i]
j=i-1
while j>=0:
if x < arr[j]:
arr[j+1] = arr[j]
arr[j]=x
j-=1
def printArr(arr):
print(arr)
arr = [4, 7 ,8 ,2 ,3 ,5]
insertSort(arr)
printArr(arr)
3.2 希尔排序
希尔排序又叫缩小增量排序,是简单插入排序的改进版,不同之处在于它会优先比较距离较远的元素
算法描述:
先将整个待排序的记录序列分割成若干子序列分别进行插入排序
- 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
- 按增量序列个数k,对序列进行k 趟排序;
- 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
图示:
代码实现(python)
def shell_sort(lists):
# 希尔排序
count = len(lists)
step = 2
group = count / step
while group > 0:
for i in range(0, group):
j = i + group
while j < count:
k = j - group
key = lists[j]
while k >= 0:
if lists[k] > key:
lists[k + group] = lists[k]
lists[k] = key
k -= group
j += group
group /= step
return lists
4 选择排序
4.1 简单选择排序
选择排序首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置作为已排序序列,然后,再从剩余排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾;以此类推,直到所有元素均排序完毕。
算法描述:
n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下:
- 初始状态:无序区为R[1..n],有序区为空;
- 第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1..i-1]和R(i..n)。该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R[i+1..n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;
- n-1趟结束,数组有序化了。
图示:
代码实现(python)
def select_sort(lists):
# 选择排序
count = len(lists)
for i in range(0, count):
min = i
for j in range(i + 1, count):
if lists[min] > lists[j]:
min = j
lists[min], lists[i] = lists[i], lists[min]
return lists
4.2 堆排序
堆排序(Heapsort)是利用堆这种数据结构设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:子节点的键值或索引总是小于(或者大于)它的父节点。
注:这个前提要弄明白堆 ,推荐链接:https://www.cnblogs.com/chengxiao/p/6129630.html
算法描述:
- 将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
- 将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
- 由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。
图示:
代码实现(python)
def adjust_heap(lists, i, size):
lchild = 2 * i + 1
rchild = 2 * i + 2
max = i
if i < size / 2:
if lchild < size and lists[lchild] > lists[max]:
max = lchild
if rchild < size and lists[rchild] > lists[max]:
max = rchild
if max != i:
lists[max], lists[i] = lists[i], lists[max]
adjust_heap(lists, max, size)
def build_heap(lists, size):
for i in range(0, (size/2))[::-1]:
adjust_heap(lists, i, size)
def heap_sort(lists):
size = len(lists)
build_heap(lists, size)
for i in range(0, size)[::-1]:
lists[0], lists[i] = lists[i], lists[0]
adjust_heap(lists, 0, i)
5 归并排序
归并排序(Merge Sort)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用。将有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
算法描述:
- 把长度为n的输入序列分成两个长度为n/2的子序列;
- 对这两个子序列分别采用归并排序;
- 将两个排序好的子序列合并成一个最终的排序序列。
图示:
代码实现(python):二路归并
def merge_sort(lists):
if len(lists)<=1:
return lists
num=len(lists)//2
left=merge_sort(lists[:num])
right=merge_sort(lists[num:])
return merge(left,right)
def merge(left,right):
i,j=0,0
result=[]
while i<len(left)and j<len(right):
if left[i]<=right[j]:
result.append(left[i])
i+=1
else:
result.append(right[j])
j+=1
result+=left[i:]
result+=right[j:]
print(result)
return result
if __name__=="__main__":
lists=[1,2,6,3,4,9,7,8]
print(merge_sort(lists))
6 基数排序
基数排序(radix sort)是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。
算法描述:
- 取得数组中的最大数,并取得位数;
- arr为原始数组,从最低位开始取每个位组成radix数组;
- 对radix进行计数排序(利用计数排序适用于小范围数的特点);
图示:
代码实现(python) :
import math
def radix_sort(lists,radix=10):
'''
math.ceil 为x取整,结果是不小于x的最小整数.
math.log(x, a) 返回 log 以 a 为底 x 的对数,若不给定 a 则底默认为 e
'''
k=int(math.ceil(math.log(max(lists),radix)))
bucket=[[]for i in range(radix)]
for i in range(1,k+1):
for j in lists:
bucket[math.floor(j / (radix ** (i - 1)) % (radix))].append(j)
#删除列表中所有元素
del list[:]
for z in bucket:
lists+=z
del z[:]
return lists
list = [434,24,657,976,2354,9,67,8099,4353,3453]
print(radix_sort(list))