经典排序算法详解

0 前言

昨天做题发现对排序算法说懂又很模糊,说不懂又知道。所以今天强化下记忆。

1 类别

从上图可以看出主要分两大类:

非线性时间比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此称为非线性时间比较类排序。

线性时间非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此称为线性时间非比较类排序。 

因此本文也按照上面分类来一一描述经典的分类算法

2  交换排序

2.1 冒泡排序

冒泡排序重复走访要排序的数列,一次比较两个元素,如果顺序出错就交换。知道没有再需要交换为止。

算法描述:

  • 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
  • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
  • 针对所有的元素重复以上的步骤,除了最后一个;
  • 重复步骤1~3,直到排序完成。

图示:

代码实现(python):

L=[10,7,5,2,8,3]
def bubble_sort(L):
    count=len(L)
    for i in range(0,count):
        for j in range(i+1,count):
            if L[i]>L[j]:
                L[i],L[j]=L[j],L[i]
    return L
print(bubble_sort(L))

2.2 快速排序

基本思想:分而治之,选取一个记录作为枢轴,经过一趟排序,将整段序列分为两个部分,其中一部分的值都小于枢轴,另一部分都大于枢轴。然后继续对这两部分继续进行排序,从而使整个序列达到有序。

算法描述:

  • 从数列中挑出一个元素,称为 “基准”(pivot);
  • 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
  • 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

图示:

代码实现(python):

def QuickSort(myList,start,end):
    #判断low是否小于high,如果为false,直接返回
    if start < end:
        i,j = start,end
        #设置基准数
        base = myList[i]
        while i < j:
            #如果列表后边的数,比基准数大或相等,则前移一位直到有比基准数小的数出现
            while (i < j) and (myList[j] >= base):
                j = j - 1
            #如找到,则把第j个元素赋值给第个元素i,此时表中i,j个元素相等
            myList[i] = myList[j]
            #同样的方式比较前半区
            while (i < j) and (myList[i] <= base):
                i = i + 1
            myList[j] = myList[i]
        #做完第一轮比较之后,列表被分成了两个半区,并且i=j,需要将这个数设置回base
        myList[i] = base
        #递归前后半区
        QuickSort(myList, start, i - 1)
        QuickSort(myList, j + 1, end)
    return myList
myList = [49,38,65,97,76,13,27,49]
print("Quick Sort: ")
QuickSort(myList,0,len(myList)-1)
print(myList)

3 插入排序

3.1 直接插入排序

通过构建有序序列,对于未排序数据,在已排序序列从后向前扫描,找到相应的位置插入

算法描述:

  • 从第一个元素开始,该元素可以认为已经被排序;
  • 取出下一个元素,在已经排序的元素序列中从后向前扫描;
  • 如果该元素(已排序)大于新元素,将该元素移到下一位置;
  • 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
  • 将新元素插入到该位置后;
  • 重复步骤2~5。

图示:

代码实现(python):

def insertSort(arr):
    length = len(arr)
    for i in range(1,length):
        x = arr[i]
        j=i-1
        while j>=0:
            if x < arr[j]:
                arr[j+1] = arr[j]
                arr[j]=x
            j-=1
def printArr(arr):
     print(arr)
arr = [4, 7 ,8 ,2 ,3 ,5]
insertSort(arr)
printArr(arr)

3.2 希尔排序

希尔排序又叫缩小增量排序,是简单插入排序的改进版,不同之处在于它会优先比较距离较远的元素

算法描述:

先将整个待排序的记录序列分割成若干子序列分别进行插入排序

  • 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
  • 按增量序列个数k,对序列进行k 趟排序;
  • 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

图示:

 

代码实现(python)

def shell_sort(lists):
    # 希尔排序
    count = len(lists)
    step = 2
    group = count / step
    while group > 0:
        for i in range(0, group):
            j = i + group
            while j < count:
                k = j - group
                key = lists[j]
                while k >= 0:
                    if lists[k] > key:
                        lists[k + group] = lists[k]
                        lists[k] = key
                    k -= group
                j += group
        group /= step
    return lists

4 选择排序

4.1  简单选择排序

选择排序首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置作为已排序序列,然后,再从剩余排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾;以此类推,直到所有元素均排序完毕。

算法描述:

n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下:

  • 初始状态:无序区为R[1..n],有序区为空;
  • 第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1..i-1]和R(i..n)。该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R[i+1..n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;
  • n-1趟结束,数组有序化了。

图示:

代码实现(python)

def select_sort(lists):
    # 选择排序
    count = len(lists)
    for i in range(0, count):
        min = i
        for j in range(i + 1, count):
            if lists[min] > lists[j]:
                min = j
        lists[min], lists[i] = lists[i], lists[min]
    return lists

4.2 堆排序

堆排序(Heapsort)是利用堆这种数据结构设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:子节点的键值或索引总是小于(或者大于)它的父节点。

注:这个前提要弄明白堆 ,推荐链接:https://www.cnblogs.com/chengxiao/p/6129630.html

算法描述:

  • 将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
  • 将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
  • 由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。

图示:

代码实现(python)

def adjust_heap(lists, i, size):
    lchild = 2 * i + 1
    rchild = 2 * i + 2
    max = i
    if i < size / 2:
        if lchild < size and lists[lchild] > lists[max]:
            max = lchild
        if rchild < size and lists[rchild] > lists[max]:
            max = rchild
        if max != i:
            lists[max], lists[i] = lists[i], lists[max]
            adjust_heap(lists, max, size)
 
def build_heap(lists, size):
    for i in range(0, (size/2))[::-1]:
        adjust_heap(lists, i, size)
 
def heap_sort(lists):
    size = len(lists)
    build_heap(lists, size)
    for i in range(0, size)[::-1]:
        lists[0], lists[i] = lists[i], lists[0]
        adjust_heap(lists, 0, i)

 

5 归并排序

归并排序(Merge Sort)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用。将有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

算法描述:

  • 把长度为n的输入序列分成两个长度为n/2的子序列;
  • 对这两个子序列分别采用归并排序;
  • 将两个排序好的子序列合并成一个最终的排序序列。

图示:

代码实现(python):二路归并

def merge_sort(lists):
    if len(lists)<=1:
        return lists
    num=len(lists)//2
    left=merge_sort(lists[:num])
    right=merge_sort(lists[num:])
    return merge(left,right)
def merge(left,right):
    i,j=0,0
    result=[]
    while i<len(left)and j<len(right):
        if left[i]<=right[j]:
            result.append(left[i])
            i+=1
        else:
            result.append(right[j])
            j+=1
    result+=left[i:]
    result+=right[j:]
    print(result)
    return result
if __name__=="__main__":
    lists=[1,2,6,3,4,9,7,8]
    print(merge_sort(lists))

 

6 基数排序

基数排序(radix sort)是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。

算法描述:

  • 取得数组中的最大数,并取得位数;
  • arr为原始数组,从最低位开始取每个位组成radix数组;
  • 对radix进行计数排序(利用计数排序适用于小范围数的特点);

图示:

 

代码实现(python) :

import math
def radix_sort(lists,radix=10):
    '''
        math.ceil 为x取整,结果是不小于x的最小整数.
        math.log(x, a)  返回 log 以 a 为底 x 的对数,若不给定 a 则底默认为 e
    '''
    k=int(math.ceil(math.log(max(lists),radix)))
    bucket=[[]for i in range(radix)]
    for i in range(1,k+1):
        for j in lists:
            bucket[math.floor(j / (radix ** (i - 1)) % (radix))].append(j)
            #删除列表中所有元素
        del list[:]
        for z in bucket:
            lists+=z
            del z[:]
    return lists
list = [434,24,657,976,2354,9,67,8099,4353,3453]
print(radix_sort(list))

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值