【大数据技术栈】数据管理范畴常用大数据技术栈

一、技术栈分层架构

大数据技术栈通常分为四个核心层级:

  1. 数据采集层
    负责多源异构数据的实时/批量采集

    • 日志采集:FlumeFlumeFlumeLogstashLogstashLogstash
    • 消息队列:KafkaKafkaKafkaRabbitMQRabbitMQRabbitMQ
    • 数据库同步:SqoopSqoopSqoopCanalCanalCanal
  2. 数据存储层
    解决海量数据的分布式存储问题
    HDFS(分布式文件系统) HDFS \text{(分布式文件系统)} HDFS(分布式文件系统)
    NoSQL数据库:Cassandra, HBase NoSQL \text{数据库:} Cassandra, \ HBase NoSQL数据库:Cassandra, HBase
    云存储: S3, Azure Blob 云存储:\ S3, \ Azure \ Blob 云存储: S3, Azure Blob

  3. 数据处理层
    实现批流融合计算

    • 批处理:Spark (RDD/DataFrame)Spark \ (RDD/DataFrame)Spark (RDD/DataFrame), MapReduceMapReduceMapReduce
    • 流处理:FlinkFlinkFlink, StormStormStorm, Spark StreamingSpark \ StreamingSpark Streaming
    • SQL引擎:HiveHiveHive, ImpalaImpalaImpala
  4. 数据应用层
    支撑上层业务场景
    机器学习: Spark MLlib, TensorFlow 机器学习:\ Spark \ MLlib, \ TensorFlow 机器学习: Spark MLlib, TensorFlow
    可视化: Tableau, Kibana 可视化:\ Tableau, \ Kibana 可视化: Tableau, Kibana
    调度系统: Airflow, Azkaban 调度系统:\ Airflow, \ Azkaban 调度系统: Airflow, Azkaban

二、能级演进背景

技术发展遵循"存储→计算→智能"的三阶跃迁:

  1. 基础存储能级(2003-2010)
    Google发布GFSGFSGFS(2003)和BigtableBigtableBigtable(2006)论文,奠定分布式存储理论基础。Hadoop实现开源化,解决PBPBPB级数据存储瓶颈。

  2. 实时计算能级(2010-2016)
    数据时效性需求催生Lambda架构:
    批处理层+速度层→服务层 \text{批处理层} + \text{速度层} \rightarrow \text{服务层} 批处理层+速度层服务层
    Spark内存计算将批处理性能提升100×100\times100×,Storm实现毫秒级延迟。

  3. 智能分析能级(2016至今)
    云原生架构推动技术融合:

    • 计算存储分离:SnowflakeSnowflakeSnowflake架构
    • 批流一体:Flink Stateful ComputingFlink \ Stateful \ ComputingFlink Stateful Computing
    • AI融合:TensorFlow on SparkTensorFlow \ on \ SparkTensorFlow on Spark
三、典型技术组合
场景技术栈组合吞吐量
实时风控Kafka+Flink+RedisKafka + Flink + RedisKafka+Flink+Redis>100K events/s>100K \ events/s>100K events/s
数仓建设Hive+Spark+HDFSHive + Spark + HDFSHive+Spark+HDFSEBEBEB级存储
用户画像Flink+ClickHouse+TensorFlowFlink + ClickHouse + TensorFlowFlink+ClickHouse+TensorFlow千维特征实时计算
四、发展趋势
  1. Serverless化AWS GlueAWS \ GlueAWS Glue等无服务架构降低运维成本
  2. AI融合深化PyTorch BigGraphPyTorch \ BigGraphPyTorch BigGraph支持万亿级图计算
  3. 隐私计算:联邦学习与差分隐私技术保障数据安全

当前技术栈已从单一工具演进为生态体系,需根据数据规模×时效性×业务复杂度数据规模 \times 时效性 \times 业务复杂度数据规模×时效性×业务复杂度三维度选择适配方案。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值