自适应滤波器及其应用 - 自适应噪声抵消器

本文深入探讨了自适应滤波器的基本原理,包括线性和非线性自适应滤波器的区别,以及FIR和IIR滤波器的特点。详细介绍了LMS和RLS算法的工作机制,对比了它们在不同环境下的性能表现。特别强调了RLS算法在处理非平稳随机信号方面的优势,并以生物医学信号处理为例,展示了自适应滤波器在噪声消除中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       传统IIR和FIR滤波器在处理输入信号的过程中滤波器参数固定,当环境发生变化时,滤波器无法实现原先设定的目标。自适应滤波器根据当前自身的状态和环境调整滤波器权系数。

1 自适应滤波器理论

 

        其中,x(n)是输入信号,y(n)是输出信号,d (n)为期望信号或参考信号,e(n) = d (n) - y(n)

为误差信号。根据自适应算法和误差信号e(n)调整滤波系数。  

       自适应滤波器类型。可以分为两大类:非线性自适应滤波器、线性自适应滤波器。非线性自适应滤波器包括基于神经网络的自适应滤波器及Volterra滤波器。非线性自适应滤波器信号处理能力更强,但计算复杂度较高。所以实践中,线性自适应滤波器使用较多。

1.1自适应滤波器结构。

      主要分为两类FIR滤波器、IIR滤波器。

      (1) FIR滤波器时非递归系统,即当前输出样本仅是过去和现在输入样本的函数,其系统冲激响应h(n)是一个有限长序列。具有很好的线性相位,无相位失真,稳定性较好。

       (2) IIR滤波器时递归系统,即当前输出样本是过去输出和过去输入样本的函数,其系统冲激h(n)是一个无限长序列。IIR系统的相频特性是非线性的,稳定性不能保证。好处是实现阶数较低,计算量较少。

1.2 自适应滤波器算法。

      自适应滤波器算法按照不同的优化准则,分为两种基本算法:最小均值误差(LMS)算法、递推最小二乘(RLS)算法。

1.2.1 LMS算法

       LMS算法使误差的均方值E[e2(n)]最小。

      自适应滤波器最常用的结构为横向结构(FIR结构),滤波器的输出信号y(n)为

其中,N为滤波器阶数,n为时间指针。

      误差序列:

e(n) = d (n) - y(n) = d (n) – wT(n) * x(n)

       权重系数更新的递推关系:

                  w(n+1)  =  w(n) + 2μe(n)x(n) x(n)

其中μ为自适应步长,用来控制稳定性与收敛率。为了确保系数收敛,最陡下降法的收敛因子满足 0 < μ < 1/\lambda max\lambda max为矩阵R的最大特征值。

自适应LMS算法不需要计算输入信号的自相关函数,也不需要求矩阵的逆,计算简单,应用广泛。但LMS算法使用的是梯度矢量的瞬时估计,会存在较大方差,导致自适应滤波性能不能达到最佳。

1.2.2 NLMS算法

       NLMS算法为归一化LMS算法,采用可变的步长因子,与LMS算法相比,其收敛速度更快,计算量相当。

1.2.3 RLS算法

RLS算法使误差的加权平方和最小,其中\lambda为遗忘因子,且0<\lambda≤1。

1.2.4 LMS算法与RLS算法比较(待验证)

       与LMS算法相比,RLS算法的最大缺点为每次迭代时的计算量较大,但收敛速度非常快。当环境噪声为平稳随机信号时,LMS算法效果明显,但当环境噪声为非平稳随机噪声时,LMS算法难以自适应跟踪统计特性不断变化的外界噪声,收敛效果一般。RLS算法能够该缺点,在非平稳的环境下获得满意的效果。

       生物医学信号是一种强噪声背景下的微弱低频信号,由复杂的生物体发出,是一种不稳定自然信号,属于非平稳随机信号。同时在生物医学应用中,计算量不大,所以适用RLS算法。

2 自适应噪声抵消器。

       自适应滤波器有多种应用类型,如:系统辨识、逆系统辨识、预测、噪声消除。不同类型的目的、手段不同,所以相应选择的输入和期望信号也不一样。本文主要介绍噪声消除应用的自适应噪声抵消器。

      自适应噪声抵消器有两个输入:噪声输入和含有噪声的实际信号。与自适应滤波原理相对应则输入的期望信号d (n) = s (n)+ v 0(n),为理想信号s (n)和需要消除噪声信号v 0(n)的混合信号。输入信号x(n)为实际采集的噪声信号v (n)。v 0(n)与v (n)强相关,与s (n)不相关。该系统的最终输出信号不是y(n)而是误差信号e(n)。误差信号e(n) = d (n) - y(n) = s (n)+ v 0(n) - y(n)。

       E[e2(n)]  = E[(s (n)+ v 0(n) - y(n))2] = E[s2(n)] - E[(v 0(n) - y(n))2]

       要是输出信号只含有有用信号,则要求E[e2(n)] 逼近E[s2(n)],E[(v 0(n) - y(n))2]取得最小值。

       自适应滤波器实质为一个去相关系统,去除或得到输入信号端和期望信号端的相关部分。自适应噪声抵消器的求解过程即为自适应滤波器理论部分,只是输入信号和期望信号和最终输出信号的物理意义不同。自适应噪声抵消器的目前是去掉噪声源和信号源的相关部分。

 

参考文献:程呈. 自适应RLS算法在心电信号去噪中的研究(D),湖南大学,2015

参考资料: https://blog.csdn.net/fenglide/article/details/45970289

 

 

     

 


 

### 2017年电子设计竞赛自适应滤波器设计方案 #### 背景介绍 2017年的全国大学生电子设计竞赛中,自适应滤波器作为E题被提出。该题目旨在考察参赛者对于信号处理技术的理解以及实际应用能力[^2]。 #### 基本原理 自适应滤波器是一种能够自动调整其传输特性以优化特定性能指标的线性滤波装置。它通过不断更新权重系数来最小化误差信号的能量,在噪声抑制、回声消除等领域有着广泛的应用价值。在本次比赛中所涉及的是基于LMS算法实现的一维离散时间序列预测型自适应FIR滤波器的设计与制作[^1]。 #### 系统结构 整个系统的硬件平台由TMS320C6748 DSP为核心构成,外接A/D转换模块用于采集输入音频信号;D/A转换电路负责将经过处理后的数字量还原成模拟电压输出给扬声播放。软件方面则主要完成初始化配置、数据读取存储、核心运算逻辑编写等工作流程。 #### 关键参数设定 为了满足比赛要求并达到较好的效果展示目的,需合理设置如下几个重要参数: - **采样频率Fs**:决定了所能表示的最大频带宽度; - **滤波长度N**:影响收敛速度和平稳度之间的平衡关系; - **步长因子μ** :控制权值向最优解逼近的速度大小。 ```cpp // 初始化函数片段示例 void init_adaptive_filter(float fs, int N, float mu){ sample_rate = fs; filter_length = N; step_size = mu; // 更多初始化操作... } ``` #### 测试验证方法 采用白噪音加纯净语音混合的方式生成测试样本集,并利用MATLAB仿真工具对比分析原始文件同经过去噪处理之后版本间的差异情况。同时也可以借助频谱图直观感受降噪前后的变化趋势,以此评估最终成果的好坏程度[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值