自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(223)
  • 资源 (8)
  • 问答 (2)
  • 收藏
  • 关注

原创 构建RAG智能体(6):基于向量存储的对话式RAG系统实践

本文深入探讨了向量存储在检索增强生成(RAG)系统中的应用,重点介绍了三种核心工作流程:对话交流、单文档处理和多文档目录处理。以对话历史为例,详细展示了如何使用FAISS向量存储构建高效检索器,包括对话数据准备、向量存储构建和检索查询实现。文章通过具体代码示例,演示了如何利用LangChain框架将对话数据嵌入到FAISS向量存储中,并将其转换为可检索的文档索引系统,为构建智能聊天机器人提供了实用方案。

2025-07-23 09:00:00 350

原创 构建RAG智能体(5):语义护栏之过滤无用信息

本文介绍了如何利用语义护栏技术(Semantic Guardrailing)来优化聊天机器人的响应质量。语义护栏的核心思想是使用嵌入模型作为语言骨干,并训练分类器来过滤不适宜或有害的输入信息。相比传统的自回归引导过滤方法,这种方法具有更低的延迟和资源消耗优势。文章详细阐述了构建语义护栏的具体步骤:首先通过生成合成数据定义"好"和"差"的对话样本;然后使用嵌入模型处理这些示例;最后基于嵌入结果训练分类器来预测输入消息的适宜程度。文中还提供了相关的环境设置和代码示例,展示

2025-07-23 08:00:00 550

原创 构建RAG智能体(4):嵌入模型的概念和应用

本文介绍了嵌入模型(Embedding Models)的核心概念及其在NLP中的应用。主要内容包括:1)嵌入模型基础,解释词嵌入和文档嵌入作为文本的数值表示;2)区分解码器模型(用于生成任务)和编码器模型(用于预测任务)的不同架构;3)实战部分展示如何使用NVIDIA嵌入模型处理查询和文档,包括查询嵌入(embed_query)和文档嵌入(embed_documents)的应用场景和区别。文章通过理论结合实践的方式,帮助读者理解嵌入模型如何将文本转化为语义向量,以及如何应用这些模型增强文档处理能力。

2025-07-23 07:00:00 808

原创 构建RAG智能体(3):处理大型文档

本文探讨了如何将大型文档(如PDF和YouTube视频)整合到大语言模型(LLM)的上下文中,以构建能有效与文档交互的系统。文章介绍了文档加载器和分块技术,解决上下文空间有限的挑战,并比较了LangChain和LlamaIndex两个框架在文档处理方面的优势。重点讨论了通过文档填充(document stuffing)方法将文档内容输入模型,以及处理长上下文时性能下降的问题。文章还演示了使用ArxivLoader加载研究论文的代码示例,展示了文档内容和元数据的提取方法。这些技术为自动化内容优化和智能文档交互

2025-07-22 18:11:37 647

原创 构建RAG智能体(2):运行状态链

本文探讨了在AI聊天机器人开发中实现记忆和上下文理解的关键技术。通过分析传统无状态对话系统的局限性,作者展示了如何使用运行状态链(Runnable)构建复杂对话系统。文章详细介绍了如何利用RunnableLambda、RunnableAssign等工具管理状态流动,实现多轮对话中的变量传递和持续上下文跟踪。通过零样本分类和创意文本生成的示例代码,演示了如何将输入、主题和生成内容等变量在不同链中传递,最终实现上下文连贯的对话响应。这些技术为构建更智能、能处理复杂对话场景的AI系统提供了可行方案。

2025-07-22 17:13:08 351

原创 构建RAG智能体(1):现代RAG开发框架之LangChain LCEL

本文介绍了LangChain Expression Language(LCEL)如何简化企业级AI应用开发中的RAG系统构建。LCEL通过管道操作符|和Runnable概念,将复杂组件(如检索器、生成器)串联为可维护的流程。文章重点展示了LCEL的核心优势:1)统一接口设计实现无缝集成;2)字典管理简化数据流;3)通过示例演示了LLM链构建和零样本分类任务实现。LCEL的现代化设计显著提升了AI系统的开发效率和可维护性。

2025-07-22 15:53:59 536

原创 机器学习详解(25):批标准化、层标准化、组标准化和实例标准化

本文对比分析了深度学习中四种主要标准化方法:批标准化(BN)、层标准化(LN)、组标准化(GN)和实例标准化(IN)。BN通过mini-batch统计量标准化特征,但对batch size敏感;LN针对序列模型独立处理每个样本;GN将通道分组标准化,平衡BN和LN优势;IN则对每个通道单独标准化,适合风格迁移任务。文章通过图像分类案例详细说明了四种方法的具体计算过程,并提供了标准化方法的选择指南:BN适合大batch训练,LN适用于RNN/Transformer,GN在视觉任务中表现优异,IN则专精于风格迁

2025-07-22 07:00:00 501

原创 机器学习详解(24):超参数大小设置指南之Epoch、学习率、批大小与权重衰减

深度学习模型训练的关键超参数包括训练轮数(Epochs)、学习率(Learning Rate)和批大小(Batch Size)。这些参数对模型性能、收敛速度和稳定性有重要影响: Epochs:表示模型遍历整个训练集的次数。太少会导致欠拟合,太多可能过拟合。建议使用早停法(Early Stopping)和观察学习曲线来确定最佳轮数。 Learning Rate:控制参数更新的步长。过大会导致训练不稳定,过小则收敛缓慢。推荐使用学习率查找器和动态调整策略(如ReduceLROnPlateau)来优化学习率。

2025-07-21 07:00:00 835 1

原创 机器学习详解(23):Huber Loss损失函数(解决离群值)

Huber回归通过结合平方损失和绝对值损失的优势,有效提升模型在离群值干扰下的鲁棒性。其损失函数以阈值δ控制误差处理方式:小误差时保持平方损失的高精度,大误差时切换为线性损失以降低离群点影响。实验对比显示,相较于传统线性回归,Huber回归在合成数据中更准确拟合真实趋势(如预测值806.72 vs 87.38)。实际应用中需平衡δ的选择,并可通过Scikit-learn快速实现。该方法的灵活性使其适用于NLP、时间序列预测等多领域,为噪声数据建模提供可靠解决方案。

2025-07-18 08:00:00 912

原创 机器学习详解(22):Focal Loss损失函数(解决类别不平衡)

针对类别不平衡问题,Focal Loss通过引入调制因子γ和类别权重α改进传统交叉熵损失。γ降低易分类样本的损失权重,使模型聚焦困难样本;α调整不同类别的重要性。实验表明,Focal Loss能有效抑制大量简单负样本的干扰,提升模型对少数类和困难样本的学习能力,在目标检测等不平衡任务中表现优异。(144字)

2025-07-18 07:00:00 849

原创 基于Tranformer的NLP实战(7):BERT实战-实现命名实体识别

这篇文章我们基于 NeMo 框架实现了医学领域的命名实体识别系统,涵盖了从数据加载、模型训练到推理评估的完整流程,并对比了通用模型与医学领域模型在任务表现上的差异。实验显示,领域模型如 BioMegatron 在识别准确率上更具优势,特别适用于处理专业性强的医学文本。此外,当前模型仅识别疾病实体,未来可以扩展到多类别实体识别(如药物、症状、基因等),并结合上下游任务如关系抽取,构建更完整的医学知识抽取系统。

2025-07-17 07:00:00 554

原创 基于Tranformer的NLP实战(6):BERT实战-作者归属识别

本项目探索了利用 BERT 模型进行作者归属识别的可行性,验证了语言模型在识别写作风格差异方面的潜力。通过构建分类模型对《联邦党人文集》中的争议文章进行分析,展示了深度学习方法在文本风格识别任务中的实际应用能力。

2025-07-16 07:00:00 999

原创 基于Tranformer的NLP实战(5):BERT实战-基于Pytorch Lightning的文本分类模型

通过本篇实践,我们不仅完成了一个医学文本分类器的搭建,还深入理解了 NeMo 与 PyTorch Lightning 的协作关系。NeMo 的封装加速了模型落地,而 Lightning 的模块化设计则为进一步定制打下基础。未来你可以基于该框架轻松扩展至多分类、多语言模型或其他医学 NLP 任务,构建更具实际价值的 AI 应用。

2025-07-15 07:00:00 732

原创 基于Tranformer的NLP实战(4):BERT实战-文本分类与命名实体识别的数据结构

这篇文章主要探索了用于文本分类和命名实体识别任务的两个数据集结构。文本分类任务中,每条文本会被标注为某一类疾病(癌症、神经系统疾病或其他)NER 任务中,每个词都被标注为 I、O或B,以识别医学文献中的疾病实体。掌握了数据结构,就为后续构建 BERT 模型打下了坚实基础。下一篇文章,我们将正式进入模型构建部分,并了解如何使用 NVIDIA NeMo 工具包。

2025-07-03 07:00:00 1315

原创 基于Tranformer的NLP实战(3):预训练BERT语言模型

在这篇文章中,我们学习了如何训练一个 BERT 分词器,并利用 NVIDIA NeMo 框架在大规模无标签文本数据上预训练一个 BERT 语言模型。尽管预训练阶段不依赖带标签数据,但它需要大量的计算资源和时间,一般要一周甚至更多的时间。相比之下,微调BERT模型的计算开销较小,但需配合带标签的数据集。

2025-07-02 07:00:00 1324

原创 基于Tranformer的NLP实战(2):BERT原理与可视化

BERT),是基于 Transformer 模型编码器部分的模型。BERT 将输入文本映射到训练好的、带上下文的表示。具体来说,BERT 模型将两个句子作为输入,用特殊符号[SEP]掩码语言模型预测(下一句预测(为了将原始文本转换为数值表示,BERT 使用了一种名为WordPiece的子词分词算法(稍后介绍)。BERT 通常作为语言模型编码器使用。如下图所示,其预训练检查点可通过附加任务特定的层进行扩展。然后在下游任务上进行微调,如令牌分类(命名实体识别)、文本分类、问答等。

2025-06-26 07:00:00 945

原创 基于Tranformer的NLP实战(1):Transformer架构详解

Transformer架构支撑着无数现代自然语言处理、计算机视觉、自动语音识别、时间序列建模及其他应用。在这篇文章中,我们将从整体上了解Transformer架构,以便在本课程后续部分讨论BERT和GPT架构的实现细节。在2017年末,大量的序列到序列(seq2seq)问题,包括翻译,都是通过卷积神经网络或循环神经网络解决的。当时所有模型的共同点是,它们都大量利用了注意力机制,以便处理长序列。Transformer架构在。

2025-06-25 07:00:00 767

原创 基于Transformer架构的脑瘤MRI图像分类实现

这里我们基于自定义一个架构,我们要同时考虑局部特征提取能力与全局建模能力,并在计算效率、参数规模与泛化能力之间取得平衡。这里我们设计了一种融合CNN与Transformer架构优势的自定义模型。CNN计算成本低,擅长提取局部空间特征,但在处理大规模数据时存在性能上限;而Transformer则擅长捕捉全局上下文信息,但计算成本较高。因此,我们对Transformer架构进行了优化,以降低资源消耗的同时保留其建模能力,并利用CNN的归纳偏差加快模型收敛速度。引入CNN作为前置模块。

2025-05-28 07:00:00 728

原创 深度学习模型部署(4):使用已部署的模型

本节内容展示了如何通过使用问答模型进行实时推理。我们首先介绍了Triton的API接口结构,并通过Python客户端完成了从问题构造、文本预处理、构造模型输入、发送请求到服务器、接收输出结果,再到解析logits并获取最终答案的完整推理流程。通过这一实践,我们掌握了如何将一个深度学习模型以服务形式部署并进行实时调用。

2025-05-22 07:00:00 648

原创 深度学习模型部署(3):服务器性能

本文通过实测与分析,系统评估了Triton推理服务器的三项关键优化技术:并发执行、动态批处理与TensorRT加速。我们对比了启用与未启用优化功能的模型性能差异,发现优化后的模型在吞吐量和延迟上均有显著提升。随后,我们介绍了推理服务在生产环境中的部署架构,以及如何利用Kubernetes和Prometheus实现服务的自动扩缩容与性能监控。下一篇文章,我们将学习如何构建利用 Triton 功能的自定义应用…

2025-05-21 07:00:00 757

原创 深度学习模型部署(2):提升GPU利用率—并发执行、调度与批处理

本文系统介绍了如何通过并发模型执行、调度策略和动态批处理来优化的推理性能。在实验中,我们观察了 GPU 利用率的变化,理解了单实例与多实例、静态批处理与动态批处理之间的差异和优势。高并发 + 小批量请求在单实例下可能导致资源瓶颈,而增加实例数量可以提升吞吐;动态批处理能有效整合多个小请求,进一步提升性能,同时减少内存开销;针对不同模型结构(有状态/无状态、单模型/集成模型),选择合适的调度方式是优化的关键。

2025-05-20 07:00:00 946

原创 深度学习模型部署(1):模型导出

通过本节实验,你已经成功将一个 NLP 模型(BERT)以格式部署到,并进一步探索了通过ONNX和TensorRT格式实现的部署优化。在下一篇文章中,我们将学习如何对模型本身进行优化,并以更高效的方式进行部署…

2025-05-19 07:00:00 946

原创 机器学习详解(21):K折交叉验证详解

K折交叉验证(K-Fold Cross-Validation)是一种评估机器学习模型泛化能力的有效方法。它将数据集划分为K个子集,每轮使用其中一个子集作为验证集,其余K-1个子集用于训练,确保每个数据点都至少被验证一次。相比传统的训练-测试划分,K折交叉验证能减少因数据划分方式导致的评估结果波动,提供更稳定、全面的模型性能估计。常见的K值选择为5或10,平衡计算成本与评估稳定性。此外,针对不同数据特点,还有分层K折、留一法、分组K折等变体,适用于类别不平衡、小数据集或分组结构数据等场景。通过K折交叉验证,可

2025-05-16 07:00:00 1131

原创 NLP基础(6):NLP深度学习实例

这篇文章围绕深度学习在自然语言处理中的实际应用展开,通过具体实现展示了神经网络在理解语义、识别文本类别以及生成语言内容等方面的强大能力,虽然存在如训练数据规模有限、预处理简单、模型尚未充分调优等问题,但模型效果在一定程度上体现了方法的可行性。

2025-05-15 07:00:00 985

原创 NLP基础(5):NLP常见应用案例的代码实现

本文介绍了基于消费者投诉的多类别文本分类任务,旨在通过自然语言处理(NLP)技术自动识别金融行业中的投诉类别,并将其分发给相关部门。文章详细描述了从数据读取、预处理、特征提取到模型训练与评估的完整流程。通过使用TF-IDF向量化文本数据,并采用逻辑回归模型进行分类,最终实现了84.8%的准确率。文章还通过混淆矩阵和分类报告分析了模型在不同类别上的表现,发现模型对主流投诉类型分类效果较好,但对小类别的识别仍有提升空间。最后,文章展示了如何对新的投诉文本进行预测,验证了模型的实际应用能力。

2025-05-14 07:00:00 890

原创 NLP基础(4):常见NLP处理任务的实现

本文我们不仅介绍了名词短语提取、文本相似度计算、实体识别、主题建模、文本分类等文本处理技术,也深入了解了情感分析、词义消歧、语音与文本互转以及语言翻译等多模态应用。这些任务是构建智能对话系统、推荐系统、搜索引擎等高级应用不可或缺的部分。

2025-05-13 07:00:00 1612

原创 NLP基础(3):特征工程之文本向量化方法详解

虽然我们之前学习的所有文本向量化方法(如One-HotTF-IDF无法捕捉词语的上下文与语义关系在 a 中,“apple” 是 水果,在 b 中,“apple” 是苹果公司。传统方法只知道“apple 出现了”,却无法理解它的含义随上下文改变。词嵌入() 是一种将词表示为稠密向量(让相似的词在向量空间中彼此靠近,自动学习语义关系每个词用一个实数向量表示(如 100 维、300 维等)向量不仅编码了词的语义,也编码了上下文环境可以使用在分类、聚类、相似度计算、翻译等任务中特性说明稠密。

2025-05-12 07:00:00 917

原创 NLP基础(2):文本清洗与格式化

在自然语言处理任务中,模型的效果不仅取决于算法本身,更依赖于输入数据的质量。通过对文本进行清洗、规范化、去除噪声和无用词,我们才能为后续建模打下扎实基础。

2025-05-09 07:00:00 836

原创 NLP基础(1):文本数据的获取与处理

文本数据的提取是自然语言处理的第一步,也是非常关键的一步。只有掌握了从各种来源(如本地文件、网页等)高效获取数据的能力,后续的文本清洗、建模、分析工作才能顺利进行。

2025-05-08 07:00:00 1146

原创 基于扩散模型的生成式AI实战(6):MNIST手写数字图片生成

至此,我们完成了《基于扩散模型的生成式AI实战》系列的最后一篇文章。本篇的目标是巩固之前的知识,并以 MNIST 数据集为例,完整实现一个能“生成手写数字”的扩散模型。如何构建前向扩散与逆向还原过程;如何利用 U-Net 架构进行噪声预测;如何引入时间与条件嵌入;如何训练模型预测噪声;最后使用技术增强采样效果。如果你想进一步深入扩散模型,可以尝试更复杂的数据集(如CIFAR-10CelebA),引入更多控制条件(如文本或风格),或探索更强大的模型如和ControlNet。

2025-05-07 07:00:00 1133

原创 基于扩散模型的生成式AI实战(5):对比语言-图像预训练模型(CLIP)

这篇文章我们围绕 CLIP 模型展开,展示了如何使用 CLIP 将图像和文本分别编码成语义向量,并利用它们之间的余弦相似度进行图文匹配。在此基础上,进一步构建了一个使用 CLIP 编码作为标签的数据集,通过将图像的编码结果预处理后存储进 CSV,加快训练效率。随后,我们用这些编码作为条件输入,结合 DDPM 扩散模型训练了一个文本生成图像的神经网络。最终,通过设计文本提示,实现了从任意文本生成符合语义的图像。

2025-05-06 07:00:00 725

原创 基于扩散模型的生成式AI实战(4):支持类别控制的条件扩散模型

本篇文章介绍了如何基于 FashionMNIST 和 TF Flowers 构建一个支持类别控制的条件扩散模型。通过在 U-Net 中引入类别嵌入和伯努利掩码,实现了无监督与有监督的统一训练,同时利用 Classifier-Free Guidance 提升图像生成质量和类别一致性。最终,模型成功在彩色图像上生成了清晰、多样的类别特定图像,为后续文本生成图像打下基础。在下一篇文章中,我们将构建完整的文本生成图像()流程来进一步提升生成效果…

2025-04-28 07:00:00 962

原创 基于扩散模型的生成式AI实战(3):去噪模型优化(组归一化、GELU、重排池化、时间嵌入和残差连接)

这篇文章围绕扩散模型的图像生成过程进行改进,逐步搭建并优化了一个能生成 FashionMNIST 图像的扩散网络。作者从基础出发,首先引入了和GELU激活函数,替代传统的 BatchNorm 和 ReLU,以提升在小 batch 下的稳定性和表达能力。接着,利用替代 MaxPooling,让网络可以通过结构性重排自主决定哪些局部特征重要。同时,加入了基于正余弦函数的,让模型能够准确感知当前所处的扩散时间步。为了进一步缓解棋盘格伪影问题,文章引入了多个。

2025-04-25 07:00:00 807

原创 基于扩散模型的生成式AI实战(2):去噪扩散概率模型

U-Net 是扩散模型中最常用的噪声预测器。为了让 U-Net 适用于扩散模型,我们需要对原始 U-Net 做一些关键修改,使其能处理“带噪图像”和“时间步信息”,完成扩散过程中的噪声预测任务。原理是将 U-Net 从“图像到图像”的架构,改造成“带噪图像 + 时间 → 噪声估计”的架构,核心是加入时间嵌入、处理带噪图像,并以噪声预测作为训练目标。

2025-04-24 07:00:00 694

原创 基于扩散模型的生成式AI实战(1):U-Net去噪

虽然在U-Net详解中已经有实现U-Net的代码例子了。如果我们给图像添加噪声,再使用 U-Net 将图像与噪声分离,会发生什么?我们是否可以仅向模型输入噪声,然后生成可识别的图像?这篇文章我们就通过构建 U-Net 网络,探索如何利用其对图像进行去噪和生成新图像的能力。学习内容包括:使用 FashionMNIST 数据集,搭建 U-Net 架构(包含下采样和上采样模块),训练模型以从图像中去除噪声,并尝试生成服装图像。本篇博客以 U-Net 为基础,探索了其在图像去噪和生成方面的能力。

2025-04-23 07:00:00 2090 1

原创 生成式AI(4): 扩散模型的性能、应用和影响

Latent Diffusion 是一种用来加速扩散过程的方法,Stable Diffusion 模型就是基于该技术。如下图所示,回忆一下自编码器的基本流程:我们首先将输入图像xxx编码为潜在表示zzz,然后再通过解码器将其还原为x′x'x′。Latent Diffusion 的关键在于:它将扩散和去噪过程放在潜在空间中完成,而不是直接在图像空间操作。这样可以显著提升采样效率。潜在空间(Latent Space)是原始数据在经过编码后映射到的一个低维抽象空间,它保留了数据的核心特征。

2025-04-22 07:00:00 907

原创 生成式AI(3):去噪扩散模型DDPM详解

近年来,扩散模型()在图像生成任务中展现出了极高的性能,逐渐成为继 GANs 和 VAEs 之后的一类重要生成模型。特别是在高分辨率图像合成、图像编辑和音频生成等领域,扩散模型因其稳定性强、生成质量高而备受关注。去噪扩散模型(, DDPM)是扩散模型的代表性方法,其核心思想是将一个图像逐步添加噪声变成纯噪声,再通过一个反向过程一步步去噪还原原始图像。扩散模型的关键在于两个过程:前向扩散过程 和 反向去噪过程,它们通过构建可学习的马尔可夫链,实现从随机噪声中生成高质量数据。扩散模型是一种生成模型,其特点包括:

2025-04-18 07:00:00 1336

原创 生成式AI(2):生成式模型简介之自编码器、变分自编码器和生成对抗网络

生成模型是一类可以生成新的数据实例的模型。它们不同于判别模型,后者的作用是对数据进行分类。下图展示了图像空间与潜在分布之间的关系。图中的蓝色箭头表示将图像从图像空间映射到一个低维的潜在分布空间,而橙色箭头则表示从潜在分布中生成图像的过程。也就是说,蓝色箭头代表“压缩”过程,橙色箭头代表“生成”过程。生成模型的核心思想是:我们可以从一个低维的潜在空间(这个空间的分布通常是高斯分布)生成出具有真实感的图像。你可以把潜在空间想象成一个压缩版本的“图像本质特征空间”,它只保留了最关键的信息。

2025-04-17 07:00:00 1120

原创 生成式AI(1):U-Net详解

U-Net 是一种卷积神经网络架构,最初专为生物医学图像分割任务设计。该模型于 2015 年提出,凭借其高效性和出色的性能,已成为图像分割领域中的主流架构之一。U-Net 之所以得名,是因为它具有对称的 U 形结构编码路径():通过多层卷积和最大池化操作,对输入图像进行逐步下采样,提取图像的上下文信息,即“压缩”图像。解码路径(:通过上采样与卷积操作,将编码过程中的特征图还原为与原图大小一致的分割图,即“扩展”图像。U-Net 的核心优势来自于它的跳跃连接()——连接编码器和解码器中相同层级的特征图。

2025-04-16 07:00:00 840

原创 机器学习详解(20):LSTM代码详解之情感分析

情感分析是自然语言处理中的经典任务之一,目标是判断一段文本中表达的情绪倾向,比如褒义、贬义或中性。在电商评论、舆情监测、客服反馈等场景中都有着广泛的应用价值。相比传统的机器学习方法,基于循环神经网络(RNN)尤其是长短期记忆网络(LSTM)的模型,能够更好地捕捉文本中的上下文依赖关系,从而取得更优的效果。

2025-04-09 07:00:00 1420

Triton模型部署相关脚本文件

Triton模型部署相关脚本文件

2025-05-04

python作者归属识别数据集

python作者归属识别数据集

2025-05-04

NCBI医学语料库,用于文本分类和命名实体识别

NCBI医学语料库,用于文本分类和命名实体识别

2025-04-30

ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition

ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition

2024-01-12

ARM Cortex-A Series Programmer's Guide

ARM Cortex-A系列编程指南

2024-01-12

ARM11、ARMv7和ARMv8/v9架构参考手册

此压缩包包括ARM11、ARMv7和ARMv8/v9的architecture reference manual.

2023-12-10

Cortex-A7 Technical Reference Manual

Cortex-A7 Technical Reference Manual

2023-12-10

ARM GIC通用中断控制器规范手册

ARM GIC通用中断控制器规范手册

2023-12-10

Avoiding Read While Write Errors When In-Software Flash

Avoiding Read While Write Errors When In-Software Flash

2023-11-27

SDIO Simplified Specification Version 3.00

SDIO Simplified Specification Version 3.00

2023-10-22

SD Specifications Part 1 Physical Layer Specification

SD物理层协议规范

2023-10-18

IAR开发指南手册EWARM-DevelopmentGuide

EWARM_DevelopmentGuide.ENU

2023-09-05

AES加解密算法(Rijndael) C++代码

AES-128、AES-192、AES-256的加解密C++实现代码,加密方式包含CBC、ECB和CFB1。压缩包为Codeblocks工程。

2023-09-03

RT1176 DAP&JLINK SDRAM script.rar

RT1170的DAP和JLINK初始化SDRAM脚本

2023-05-29

cortex-m4f-lazy-stacking-and-context-switching.pdf

cortex-m4f-lazy-stacking-and-context-switching.pdf

2022-12-02

ARMv8-M Architecture Reference Manual.pdf

ARMv8-M Architecture Reference Manual.pdf

2022-12-02

ARMv7 Architecture Reference Manual.pdf

ARMv7 Architecture Reference Manual.pdf

2022-12-02

Bluetooth 16-bit UUID Numbers Document

Bluetooth 16-bit UUID Numbers Document

2022-11-24

Supplement to the Bluetooth Core Specification

Supplement to the Bluetooth Core Specification

2022-11-24

QT右键菜单栏的实现源码

QT右键菜单栏实现

2022-11-18

蓝牙规范手册Core-V5.0

蓝牙规范手册Core-V5.0

2022-11-18

QT实现背景图片上下拼接滚动

背景图片无限滚动效果

2022-05-07

STM32_PMSM_FOC_SDK_V3.2 全部课件资料

part1~11,压缩包是11个PDF,蒋建国培训视频对应的资料

2021-10-18

STM32 PWM的OCToggle模式输出频率和占空比动态调整的波形

STM32官方例程中,关于TIM的例程应该是最多的,其中提供了OCToggle模式例程,但是我看网上基本没有人拿这个应用到频率和占空比可调的程序中,而是采用每次重新设置一次定时器的方式改变,很明显这样效率的程序是不可能应用在实际项目中的。我这个文件就是一个简单实现的一个.c文件。TIM_Period必须设置成65535,因为是动态改变,且C语言加法是循环的,也就是最大值+1=最小值。到了边界的时候,65530+6=1。

2020-02-24

华为技术有限公司c语言编程规范 PDF

华为技术有限公司c语言编程规范 PDF

2021-03-06

lena_gray_512.tif

图像处理最为经典的lena图片,tiff格式。

2020-09-28

gnu-ld链接脚本浅析.pdf

gnu-ld链接脚本浅析.pdf

2021-03-03

STM32 ST-LINK Utility v4.5.0.rar

STM32 ST-LINK Utility 最新版v4.5.0 stlink setup stlink升级固件

2020-08-31

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除