机器学习常见面试问题(一)

过拟合原因
数据:数据不规范,数据量少,数据穿越,统计特征用到了未来的信息或者标签信息
算法:算法过于复杂
解决:
1、将数据规范化,处理缺失值,增加数据量,采样,添加噪声数据
2、正则化,控制模型复杂程度,
3、early stoping,减少迭代次数,减少树的深度,
4、学习率调大/小点、
5、融合几个模型

L1和L2的区别
1、L1是Lasso Regression,表示向量中每个元素绝对值的和:L1范数的解通常是稀疏性的,倾向于选择数目较少的一些非常大的值或者数目较多的insignificant的小值。
2、L2是岭回归,Ridge Regression,是欧氏距离也就是平方和的平方根。L2范数越小,可以使得w的每个元素都很小,接近于0,但L1范数不同的是他不会让它等于0而是接近于0。
3、L1正则化的w可取的值是转置的方形,L2对应的是圆形。这样损失函数l(w)的最小值更容易在L1对应的边角上取得,从而这些维度变成0了。
从贝叶斯的角度来看,加入正则项相当于加入了一种先验。即当训练一个模型时,仅依靠当前的训练数据集是不够的,为了实现更好的泛化能力,往往需要加入先验项。
L1范数相当于加入了一个Laplacean先验;
L2范数相当于加入了一个Gaussian先验。
4、L2对大数的惩罚更大,但是解相对来说比较均匀。

生成模型和判别模型区别
对于输入x,类别标签y:
生成式模型估计它们的联合概率分布P(x,

Termux是个在Android上运行的终端模拟器和Linux环境应用程序,它可以让你在Android设备上使用Linux命令行工具。但是,Termux并不支持安装Windows 10操作系统。Windows 10是微软公司开发的操作系统,只能在PC或者笔记本电脑上安装。 如果你想在Android设备上运行Windows 10,你可以尝试使用虚拟机软件,如VirtualBox或VMware等。这些软件可以在Android设备上运行,并且可以安装Windows 10操作系统。但是需要注意的是,这种方式需要你的设备性能足够强大才能运行流畅,并且需要定的技术水平来进行配置和管理。 如果你只是想在Android设备上使用Windows应用程序,你可以尝试使用Wine软件。Wine是个允许在Linux和其他Unix类操作系统上运行Windows应用程序的兼容层。在Termux中安装Wine可以通过以下步骤实现: 1. 在Termux中安装必要的依赖库:pkg install x11-repo && pkg install wine 2. 下载并安装Wine应用程序:wget https://dl.winehq.org/wine-builds/android/wine-5.0-rc1-arm.apk && apt install ./wine-5.0-rc1-arm.apk 3. 运行Wine:winecfg 4. 在Wine配置窗口中设置Windows版本和其他选项,然后关闭窗口。 5. 下载并安装Windows应用程序:wget http://example.com/yourapp.exe && wine yourapp.exe 请注意,Wine并不是完美的Windows应用程序兼容层,某些应用程序可能无法正常运行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值