6-1 Shape类 (20分)

本文介绍了一个基于Java的形状类设计案例,包括抽象基类Shape及其实现类Square、Rectangle和Circle。通过继承和多态特性实现了不同形状的周长和面积计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

java旧题复习
作业4
6-1 Shape类 (20分)
定义一个形状类Shape,提供计算周长getPerimeter()和面积getArea()的函数 定义一个子类正方形类Square继承自Shape类,拥有边长属性,提供构造函数,能够计算周长getPerimeter()和面积getArea() 定义一个子类长方形类Rectangle继承自Square类,拥有长、宽属性,提供构造函数,能够计算周长getPerimeter()和面积getArea() 定义一个子类圆形类Circle继承自Shape,拥有半径属性,提供构造函数,能够计算周长getPerimeter()和面积getArea()

在main函数中,分别构造三个子类的对象,并输出他们的周长、面积. 提示:用System.out.printf("%.2f",d)进行格式化输出

输入描述:
正方形类的边长 长方形类的长宽 圆类的半径

输出描述:
正方形的周长、面积 长方形的周长、面积

裁判测试程序样例:

import java.util.Scanner;
public class Main{
    public static void main(String[] args) {
         Scanner scan = new Scanner(System.in);      
         double length = scan.nextDouble();
         Square s = new Square(length);
         System.out.printf("%.2f ",s.getPerimeter());
         System.out.printf("%.2f\n",s.getArea());

         length = scan.nextDouble();
         double wide = scan.nextDouble();
         Rectangle r = new Rectangle(length,wide);
         System.out.printf("%.2f ",r.getPerimeter());
         System.out.printf("%.2f\n",r.getArea());

         double radius = scan.nextDouble();
         Circle c = new Circle(radius);
         System.out.printf("%.2f ",c.getPerimeter());
         System.out.printf("%.2f\n",c.getArea());

         scan.close(); 
    }
}

/* 你的代码被嵌在这里 */

输入样例:
在这里给出一组输入。例如:

1
1 2
2

输出样例:
在这里给出相应的输出。例如:

4.00 1.00
6.00 2.00
12.57 12.57

ans:

abstract class Shape{//把Shape写成抽象类更易实现;
	abstract double getPerimeter();
	abstract double getArea();
}//周长函数与面积函数是内部的两个抽象方法

class Square extends Shape{//继承自Shape,内部需要实现提供的两个抽象方法
	
	double len;
	public Square(double len) {
		this.len=len;
	}
	
	public double getPerimeter() {
		return 4*this.len;
	}
	
	public double getArea() {
		return this.len*this.len;
	}
}

class Rectangle extends Square{//长方形类
	double broad;
	public Rectangle(double len,double broad) {
		super(len);
		this.broad=broad;
	}
	
	@Override
	public double getPerimeter() {
		return 2*this.len+2*this.broad;
	}
	
	@Override
	public double getArea() {
		return this.len*this.broad;
	} 
	
}

class Circle extends Shape{//圆形类
	double r;
	
	public Circle(double r) {
		this.r=r;
	}
	
	@Override
	public double getPerimeter() {
		return 2*Math.PI*r;
	}
	
	@Override
	public double getArea() {
		return Math.PI*this.r*this.r;
	} 
}
<think>嗯,用户想找用TensorFlow实现CIFAR-10数据集上的CNN图像的教程或示例代码。首先,我需要回顾一下CIFAR-10数据集的基本信息,确保自己理解正确。根据引用[2],CIFAR-10包含106万张图片,训练集5万,测试集1万,每6000张,图片是彩色32x32的。预处理的话,通常会将像素值归一化到0-1之间,像引用[2]里的代码那样除以255.0。 接下来,用户需要的是CNN模型的构建。TensorFlow的Keras接口比较方便,所以应该用layers模块来构建卷积层、池化层、全连接层等。引用[3]和[4]提到使用TensorFlow的CNN实现,可能涉及卷积层、激活函数、池化、Dropout和BatchNormalization这些技术。比如,经典的LeNet或似结构,可能包括多个卷积层,后面接全连接层。 然后,数据预处理部,除了归一化,可能还需要数据增强,比如随机翻转、裁剪等,这在图像中很常见,可以提升模型泛化能力。引用[3]中的代码可能用了这些方法,不过具体要看示例。另外,标签需要one-hot编码,可以用tf.keras.utils.to_categorical或者OneHotEncoder,引用[4]里提到了OneHotEncoder,但代码示例可能需要调整,因为正确的导入路径应该是sklearn.preprocessing里的。 构建模型的部,可能需要先添加卷积层,比如Conv2D,接着是激活函数ReLU,然后MaxPooling2D,重复几次,之后Flatten,接全连接层。为了防止过拟合,可以加入Dropout层。例如,引用[3]中的模型可能有这样的结构。 然后是编译模型,选择优化器(如Adam)、损失函数(交叉熵),评估指标(准确率)。训练过程用model.fit,指定epochs和batch_size,以及验证数据。训练完成后,用测试集评估,可能还要可视化训练过程中的准确率和损失曲线,像引用[2]中的plt.plot那样。 用户可能需要具体的代码示例,所以需要整合这些步骤,并确保代码正确。比如,引用[2]里的数据加载和预处理,引用[3]和[4]中的模型构建部。但要注意引用[4]里的代码可能有拼写错误,比如'sklearn.preprocessiong'中的拼写错误,需要指出正确的方法。 另外,用户可能对如何改进模型或调整超参数感兴趣,所以相关问题可以包括数据增强、模型结构调整、超参数调优等。同时,注意引用提供的项目地址,比如引用[1]的GitCode项目,可能包含完整的示例,可以推荐给用户参考。 最后,检查是否符合用户的系统级指令,比如数学公式的格式是否正确,代码块是否用```python包裹,是否有生成相关问题,引用标记是否正确添加。确保回答结构清晰,步骤说明,并且代码示例能直接运行,或者指出可能的错误点,比如引用[4]中的导入错误需要更正。</think>根据您的需求,我将步骤说明如何使用TensorFlow实现CIFAR-10图像的CNN模型,并提供完整代码示例。以下是实现要点: ### 一、数据准备 1. 数据集加载: ```python import tensorflow as tf from tensorflow.keras import datasets, layers, models # 加载数据集[^2] (train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data() ``` 2. 数据预处理: ```python # 归一化处理[^2] train_images, test_images = train_images / 255.0, test_images / 255.0 # One-Hot编码标签 train_labels = tf.keras.utils.to_categorical(train_labels, 10) test_labels = tf.keras.utils.to_categorical(test_labels, 10) ``` ### 二、CNN模型构建 ```python model = models.Sequential([ # 卷积层1[^3] layers.Conv2D(32, (3,3), activation='relu', input_shape=(32,32,3)), layers.MaxPooling2D((2,2)), # 卷积层2 layers.Conv2D(64, (3,3), activation='relu'), layers.MaxPooling2D((2,2)), # 全连接层 layers.Flatten(), layers.Dense(128, activation='relu'), layers.Dropout(0.5), layers.Dense(10, activation='softmax') ]) ``` ### 三、模型训练 ```python # 编译模型[^4] model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 训练模型 history = model.fit(train_images, train_labels, epochs=20, batch_size=64, validation_split=0.2) ``` ### 四、结果评估 ```python # 测试集评估 test_loss, test_acc = model.evaluate(test_images, test_labels) print(f"测试准确率:{test_acc*100:.2f}%") # 可视化训练过程 plt.plot(history.history['accuracy'], label='训练准确率') plt.plot(history.history['val_accuracy'], label='验证准确率') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.legend() ``` ### 五、改进建议 1. **数据增强**:添加图像增强层提升泛化能力 ```python data_augmentation = tf.keras.Sequential([ layers.RandomFlip("horizontal"), layers.RandomRotation(0.1), layers.RandomZoom(0.1), ]) ``` 2. **模型优化**:尝试添加BatchNormalization层 ```python layers.BatchNormalization() ``` 推荐参考GitCode上的完整实现项目[^1],包含更详细的训练参数配置和模型保存方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值