Python中dtypes和dtype用法

这篇博客介绍了如何在Python的Pandas库中查看和处理数据类型的细节。通过使用`dataset.dtypes`可以查看所有列的数据类型,而`dataset[columnName].dtypes`或`dataset[columnName].dtype`用于查看特定列的类型。在读取CSV文件时,可以通过`pd.read_csv()`的`dtype`参数预设列的数据类型。如果`dataset.dtypes`显示不全,可以通过`pd.set_option('display.max_rows', 120)`增加显示行数,或者使用`dataset.info(verbose=True)`获取完整信息。这些技巧对于数据清洗和预处理至关重要。
  1. 查看所有列的数据类型: dataset.dtypes 查看所有列可以用dataset.columns,但是没有dataset.columns.dtypes 这种表达
  2. 查看其中一列的数据类型: dataset[“columnName”].dtypes dataset[“columnName”].dtype均可
  3. pd.read_csv()此类公式里指定某列的数据类型: pd.read_csv(“FileName.csv”, dtype = {“columnName”: str}) 

* 关于当列太多时,使用 dataset.dtypes显示不全的问题: 因为pandas正在保护电脑不在输出中打印大量信息。第一种办法是覆盖设置:pd.set_option('display.max_rows', 120) 默认设置为60 第二种方法是直接使用 dataset.info(verbose=True) 查看列的数据类型

### Python 中 `dtype` 的定义 在 Python 数据分析库 NumPy Pandas 中,`dtype` 是用于描述数组或 DataFrame 列的数据类型的属性。对于 NumPy 数组而言,`dtype` 描述了每个元素的类型及其内存布局[^3]。 ```python import numpy as np data = np.array([1, 2, 3]) print(data.dtype) # int64 ``` Pandas 扩展了这一概念,在 Series 或者 DataFrame 中可以有多种不同的数据类型,并通过 `.dtypes` 属性来获取整个结构中的每列数据类型[^1]。 ```python import pandas as pd df = pd.DataFrame({ 'A': [1, 2], 'B': ['a', 'b'] }) print(df.dtypes) ``` ### 使用方法 #### 查看数据类型 可以通过调用对象上的特定方法或属性来检查当前使用的数据类型: - 对于单个数值型变量可以直接访问其 `dtype` 属性。 - 对于更复杂的数据容器如 Pandas 的 Series 或 DataFrame,则应分别使用 `.dtype`, `.dtypes` 方法。 ```python series_example = pd.Series([1, 2, 3], dtype='float') print(series_example.dtype) frame_example = pd.DataFrame({'col1': range(5), 'col2': list('abcde')}) print(frame_example.dtypes) ``` #### 设置自定义数据类型 当创建新的数组或导入外部数据源时,可以选择指定所需的数据类型以优化性能或节省空间。这通常是在初始化阶段完成的。 ```python custom_type_array = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32) print(custom_type_array.dtype) custom_df = pd.DataFrame( {'numbers': [1, 2, 3]}, dtype=float ) print(custom_df['numbers'].dtype) ``` ### 数据类型转换 有时需要改变现有数据集内的某些部分甚至全部的数据类型。为此提供了若干种方式来进行这种转变: - **NumPy**: 可利用 astype 函数实现快速且高效的数据类型变换。 ```python float_to_int = custom_type_array.astype(int) print(float_to_int.dtype) ``` - **Pandas**: 提供了更为灵活的方法——astype() 来处理复杂的表格化数据,允许逐列更改类型而不影响其他字段的内容。 ```python changed_types = frame_example.astype({"col1": "category", "col2": str}) print(changed_types.dtypes) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值