【DataWhale数据分析】Task2学习报告

本文介绍了如何利用DataWhale的团队学习数据挖掘项目,通过seaborn和BeautifulSoup4等工具,完成从数据预处理到绘制作者出现频率Top10的直方图过程。任务涉及筛选cs.CV领域论文、作者姓名提取与频率统计,展示了Python在数据科学中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

十分感谢DataWhale的开源分享!!!!

项目GitHub地址:https://github.com/datawhalechina/team-learning-data-mining/tree/master/AcademicTrends

DataWhale数据分析|Task2

任务介绍:

任务要求:

论文作者统计,统计所有论文作者出现频率Top10的姓名

任务流程:
  1. 下载kaggle数据集 【Task1已完成】
  2. 安装所需package:seaborn(数据可视化),BeautifulSoup4(爬虫相关,用于爬取数据),requests(网络通信),json(json格式数据读取),pandas(大数据分析),matploblib(绘图)【Task1已完成】
  3. 数据预处理,提取出所需信息(感兴趣领域的文章以及相对应的作者名称等)
  4. 根据作者名称出现频率绘制直方图

任务详解

1. 数据预处理
1) 选择类别为cs.CV下面的论文
data2 = data[data['categories'].apply(lambda x: 'cs.CV' in x)]

中间的data['categories'].apply(lambda x: 'cs.CV' in x)返回一个bool类型的dataframe列,表示data表中每一行的categories列是否包含‘cs.CV’,与表达式'cs.CV' in x的返回值相同。

  • apply介绍:

apply(func [, args [, kwargs ]]) 函数用于当函数参数已经存在于一个元组或字典中时,间接地调用函数。
args是一个包含将要提供给函数的按位置传递的参数的元组。如果省略了args,任何参数都不会被传递。
kwargs是一个包含关键字参数的字典。简单说apply()的返回值就是func()的返回值,apply()的元素参数是有序的,元素的顺序必须和func()形式参数的顺序一致

  • lambda介绍:

lambda是匿名函数,即不再使用def的形式,可以简化脚本,使结构不冗余

pandas DataFrame 的 applymap() 函数和pandas Series(列) 的 apply() 方法都是对整个对象上个各个值进行单独处理,返回一个新的对象.

pandas Series(列) 的 apply():
pandas series apply
pandas DataFrame 的 applymap():

在这里插入图片描述

而pandas DataFrame 的 apply() 函数,虽然也是作用于DataFrame的每个值,但是接受的参数不是各个值本身,而是DataFrame里各行(或列),返回一个新的行(列):
dataframe apply函数

2)拼接作者名称
all_authors = sum(data2['authors_parsed'], [])
# 拼接所有的作者
authors_names = [' '.join(x) for x in all_authors]
authors_names = pd.DataFrame(authors_names)

在本次任务中,data2['authors_parsed']返回的是每篇文章的所有作者的list,而每个作者的姓和名组成了一个list,因此是list的list,因此需要sum函数来去掉一层list,并通过join函数连接作者的姓名
data2['authors_parsed']

sum(data2[‘authors_parsed’], [ ])中后面是[ ]的缘由:
语法 sum(iterable[, start]),start默认为0,表示起始值

  • 当start为数字时:
    sum((1, 2), 0) ,返回 0 + 1 + 2,OK
    sum((1, 2), 3) ,返回 3 + 1 + 2,很完美
    但当你希望[‘apple’]+[‘banana’] = [‘apple’,‘banana’]时,结果却是0+[‘apple’]+[‘banana’]
    因此,[]便登场了
  • 当start为list时:
    sum((['apple'],['banana']), []) ,返回[ ]+[‘apple’]+[‘banana’],完美
2. 绘制直方图
1)根据作者频率绘制直方图
# 根据作者频率绘制直方图
plt.figure(figsize=(10, 6))
authors_names[0].value_counts().head(10).plot(kind='barh')

# 修改图配置
names = authors_names[0].value_counts().index.values[:10]
_ = plt.yticks(range(0, len(names)), names)
plt.ylabel('Author')
plt.xlabel('Count')
plt.show()

value_counts函数:用于统计dataframe或series中不同数或字符串出现的次数
语法: Series.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)

参数名作用
normalize计数项归一化
sort是否对频率项进行排序,默认降序
ascending排序是否升续排列,默认False
bins离散数据的分段,只能作用在数值变量,pd.cut 的简化版
dropna不包括对NA的计数

** dataframe.plot()**
语法:DataFrame.plot(x=None, y=None, kind='line', ax=None, subplots=False, sharex=None, sharey=False, layout=None,figsize=None, use_index=True, title=None, grid=None, legend=True, style=None, logx=False, logy=False,loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None,table=False, yerr=None, xerr=None, secondary_y=False, sort_columns=False, **kwds)
由于参数太多,在这里就不一一贴出了,感兴趣可以参考这篇文章
kind参数介绍:

可选参数作用
‘line’(default)折线图
‘bar’条形图
‘barh’横向条形图
‘hist’柱状图
‘box’箱线图
‘pie’饼图
‘kde’Kernel 的密度估计图,主要对柱状图添加Kernel 概率密度线
‘density’same as ‘kde’
‘scatter’散点图
‘hexbin’六边形容器图
‘area’通过区域占比,用于展示定量数据

实验结果:
实验结果

1)根据姓氏绘制统计直方图
authors_lastnames = [x[0] for x in all_authors]
authors_lastnames = pd.DataFrame(authors_lastnames)

plt.figure(figsize=(10, 6))
authors_lastnames[0].value_counts().head(10).plot(kind='barh')

names = authors_lastnames[0].value_counts().index.values[:10]
_ = plt.yticks(range(0, len(names)), names)
plt.ylabel('Author')
plt.xlabel('Count')
plt.show()

实验结果:
全是中国姓,哈哈
实验结果

参考文献:
[1]. DataFrame的apply()、applymap()、map()方法
[2]. 内置函数sum与sum(list,[])有什么关系?
[3]. pandas中value_counts 如何妙用
[4]. [python] pandas plot( )画图命令总结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值