视觉SLAM14讲第 3 讲三维空间刚体运动

3.1 旋转矩阵

1 点和向量

对于三维向量 a; b

内积

可以描述向量间的投影关系。

外积

外积方向垂直于这两个向量,大小为|a| |b| sin〈a,b〉,是两个向量张成的四边形的有向面积。引入了 ^ 符号,把 a 写成一个矩阵。事实上是一个反对称矩阵,可以将 ^ 记成一个反对称符号。就把外积写成了矩阵与向量的乘法 a^b,变成了线性运算。也可以表示向量的旋转。

右手法则下,用右手的四个指头从 a 转向 b,其大拇指朝向就是旋转向量的方向,事实上也是 a^b 的方向。大小则由 a b 的夹角决定。

2 坐标系间的欧氏变换

变换:两个坐标系之间的旋转关系,加上平移关系,统称为坐标系之间的变换关系。

通常,设定一个惯性坐标系(或者叫世界坐标系),可认为是固定不动的,例如图中 xW,yW,zW 定义的坐标系。同时,相机或机器人是一个移动坐标系,如 xC,yC,zC 定义的坐标系。对于同一个向量 p,在世界坐标系下的坐标 pw 和在相机坐标系下的 pc 是不同的。要先得到该点的相机坐标系坐标值,再根据机器人位姿转换到世界坐标系,这个变换关系由坐标系间的变换矩阵 T 来描述。

欧氏变换:相机运动是一个刚体运动,它保证了同一个向量在各个坐标系下的长度和夹角都不会发生变化。这种变换称为欧氏变换,包括旋转和平移。

1)旋转

设某个单位正交基(e1, e2, e3) 经过一次旋转,变成了 (e1′, e2′, e3′)。那么,对于同一个向量 a(该向量并没有随着坐标系的旋转而发生运动),它在两个坐标系下的坐标有以下关系:

将左边的系数化为单位矩阵:

把中间的阵拿出来,定义成一个矩阵 R。这个矩阵由两组基之间的内积组成,刻画了旋转前后同一个向量的坐标变换关系。矩阵 R 描述了旋转本身。因此它又称为旋转矩阵。

旋转矩阵是一个行列式为 1 的正交矩阵 。反之,行列式为 1 的正交矩阵也是一个旋转矩阵。我们可以把旋转矩阵的集合定义如下:

SO(n) 是特殊正交群(Special Orthogonal Group),这个集合由 n 维空间的旋转矩阵组成,特别的,SO(3) 就是三维空间的旋转了。

旋转矩阵可以描述两个坐标系之间的旋转变换,即描述相机的旋转。

旋转矩阵为正交阵,它的逆(即转置)描述了一个相反的旋转。

2)平移

世界坐标系中的向量 a,经过一次旋转(用 R 描述)和一次平移 t 后,得到了 a′,那么把旋转和平移合到一起,有:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值