IDEAL Garden
博客首页
大数据
关注
分享
复制链接
分享到 QQ
分享到新浪微博
扫一扫
文章平均质量分 80
关注数:
0
文章数:
1
文章阅读量:
228
文章收藏量:
1
作者:
Thoughtworks思特沃克中国
这个作者很懒,什么都没留下…
展开
专栏收录文章
默认排序
最新发布
最早发布
最多阅读
最少阅读
分布式计算框架状态与容错的设计
本文以Hadoop、Spark、Flink为例,介绍分布式计算框架中状态与容错的设计思想。 摘要 对于一个分布式计算引擎(尤其是7*24小时不断运行的流处理系统)来说,由于机器故障、数据异常等原因导致作业失败的情况是时常发生的,因此一般的分布式计算引擎如Hadoop、Spark都会设计状态容错机制确保作业失败后能够恢复起来继续运行,而新一代的流处理系统Flink在这一点上更有着优秀而简约的设计。 每个框架都有与之相关的诸多概念,常常令开发者感到困惑。本文会尽量避免从官方文档的角度进行论述,而是尝试先跳出具体
原创
2021-07-01 15:46:57 ·
228 阅读 ·
0 评论